...
Cs = The seismic response coefficient
SD1 = The design spectral response acceleration parameter at a period of 1.0 s
SDS = The design spectral response acceleration parameter in the short period range
R = The response modification factor in Table 12.2-1
Ie = The Importance Factor
...
The Seismic analysis procedure is performed with reduced response spectra from ground motions is used basic seismic analysis procedure. Structural elements are anticipated . At MCER level of ground motion, structural elements are prospective to yield, buckle or otherwise behave inelastically at the MCER level of ground motion. In the ASCE 7-16, the response modification coefficient, R is used to compute seismic design internal interal forces are computed by dividing the forces the response modification coefficient, R, would be . It is produced in a structure behaving elastically when subjected to the design earthquake ground motion.
...
Structures typically have a much higher lateral strength than that specified as the minimum by ASCE 7-16. The first yielding of structures may occur at lateral load levels that are 30% to 100% higher than the prescribed design seismic forces by the standart. The energy dissipation resulting from hysteretic behavior can be measured as the area enclosed by the force–deformation curve of the structure as it experiences several cycles of excitation. Some structures have far more energy dissipation capacity than others. The extent of energy dissipation capacity available depends largely on the amount of stiffness and strength degradation the structure undergoes as it experiences repeated cycles of inelastic deformation. Below figure shows representative load deformation curves for two simple substructures, such as a beam–column assembly in a frame. Hysteretic curve (a) in the figure represents the behavior of substructures that have been detailed for ductile behavior. The substructure can maintain almost all of its strength and stiffness over several large cycles of inelastic deformation. Hysteretic curve (b) represents the behavior of a substructure that has much less energy dissipation than that for the substructure (a) but has a greater change in response period. The structural response is determined by a combination of energy dissipation and period modification.
...