Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

How does ideCAD design single angle connection according to AISC 360-16?

...

smin ≥ 3d       

AISC 360-16 J3.3

 

 

s

79.5 mm

 

 

d

20 mm

s =79.5 mm > smin = 3*20=60 mm

Horizontal Edge Distance

The distance from the center of the hole to the edge of the connected part in the horizontal direction is checked per AISC 360-16.

Leh ≥ Le-min     

AISC 360-16 J3.4

 

 

Leh

50.75 mm

Leh ≥ 2d = 2 * 20 = 40 mm conformity check for application

Le-min

26 mm

Minimum distance check according to Table J3.4

Vertical Edge Distance

The distance from the center of the hole to the edge of the connected part in the vertical direction is checked per AISC 360-16.

Lev ≥ Le-min     

AISC 360-16 J3.4

 

 

Lev

40 mm

Leh ≥ 2d = 2 * 20 = 40 mm conformity check for application

Le- min

26 mm

Minimum distance check according to Table J3.4

Weld Size

The minimum size of fillet welds is checked according to AISC 360-16 Table J2.4

a ≥ amin     

AISC 360-16 Table J2.4

 

 

a

6 mm

 

amin

3.5 mm

Table J2.4

Erection Stability

L≥ hb /  2

 

 

L

239 mm

 

 

hb

248.6 mm

L=239 > 248.6/2=124.3 mm

Strength Checks

Angle Shear Yield

In the case of the block shear limit state, the gross area yielding of the tensile plane is checked according to AISC 360-16.

Ag

Image Removed

Mathinline
body--uriencoded--$$ \normalsize A_g = L_%7Bp%7D \times t_p =239 \times 12 = 2868 \; \; \mathrm%7Bmm%5e2%7D $$

 

Fy

235.359 N/mm2

 

Rn

Image Removed

Mathinline
body--uriencoded--$$ \normalsize R_n = 0.6F_%7By%7DA_g = 0.6 \times 235.359 \times 10%5e%7B-3%7D \times 2868=405 $$

AISC 360-16 J4-3

Rn / Ω

Image Removed

Mathinline
body$$ \normalsize R_n/ \Omega = 405/1.5 =270 $$

 

Required

Available

Check

Result

68,159 kN

270 kN

0.252

...

In the case of the block shear limit state, the net area rupture of the tensile plane of the connection part is checked according to AISC 360-16.

Anv

 

Mathinline

Image Removed

body--uriencoded--$$ \normalsize A_%7Bnv%7D = t_p(d_b-n_bd_e) = 7.1 \times (300-3 \times 24) = 1618.8 \; \; \mathrm%7Bmm%5e2%7D $$

Fu

362.846 N/mm2

 

Rn

Image Removed

Mathinline
body--uriencoded--$$ \normalsize R_n = 0.6F_%7Bu%7DA_%7Bnv%7D $$

Mathinline
body--uriencoded--$$ \normalsize R_n = 0.6 \times 362.846 \times 10%5e%7B-3%7D \times 1618.8=352.425 \; \mathrm%7BkN%7D $$

AISC 360-16 J4-4

Rn / Ω

Image Removed

Mathinline
body--uriencoded--$$ \normalsize R_n/ \Omega = 352.425 /2 =176.213 \; \; \mathrm%7BkN%7D $$

 

Required

Available

Check

Result

68,159 kN

176.213 kN

0.387

...

In the case of the block shear limit state, the net area rupture of the tensile plane of the connection part is checked according to AISC 360-16.

Anv

Image Removed

Mathinline
body--uriencoded--$$ \normalsize A_%7Bnv%7D = t_p(d_b-n_bd_e) = 12 \times (239-3 \times 24) = 2004 \; \; \mathrm%7Bmm%5e2%7D $$

 

Fu

362.846 N/mm2

 

Rn

Image Removed

Mathinline
body--uriencoded--$$ \normalsize R_n = 0.6F_%7Bu%7DA_%7Bnv%7D $$

Mathinline
body--uriencoded--$$ \normalsize R_n = 0.6 \times 362.846 \times 10%5e%7B-3%7D \times 2004=436.286 \; \mathrm%7BkN%7D $$

AISC 360-16 J4-4

Rn / Ω

Image Removed

Mathinline
body--uriencoded--$$ \normalsize R_n/ \Omega = 436.286 /2 =218.143\; \; \mathrm%7BkN%7D $$

 

Required

Available

Check

Result

68.159 kN

218.143 kN

0.312

...

The block shear limit state is checked according to AISC 360-16. All block shear modes combined with tensile failure on one plane and shear failure on a perpendicular plane are checked according to AISC 360-16.

Ag

Image Removed

Mathinline
body--uriencoded--$$ \normalsize A_%7Bg%7D = (2 \times 79.5 +40) \times 12 = 2388 \; \; \mathrm%7Bmm%5e2%7D $$

 

Anv

Image Removed

Mathinline
body--uriencoded--$$ \normalsize A_%7Bnv%7D = ((2 \times 79.5+40)-2.5 \times 24) \times 12 = 1668 \; \; \mathrm%7Bmm%5e2%7D $$

 

Ant

Image Removed

Mathinline
body--uriencoded--$$ \normalsize A_%7Bnt%7D = 12 \times(50.75-0.5 \times 24) = 465 \; \; \mathrm%7Bmm%5e2%7D $$

 

Fy

235.359 N/mm2

 

Fu

362.846 N/mm2

 

Ubs

1.0

 

 

Image Removed

Mathinline
body--uriencoded--$$ \normalsize U_%7Bbs%7D F_u A_%7Bnt%7D = 1 \times 362.846 \times 10%5e%7B-3%7D \times 465 = 168.72 $$

Mathinline
body--uriencoded--$$ \normalsize 0.6 F_%7Bu%7D A_%7Bnv%7D = 0.6 \times 362.846 \times 10%5e%7B-3%7D \times 1668 = 363.136 $$

Mathinline
body--uriencoded--$$ \normalsize 0.6 F_%7By%7D A_%7Bg%7D = 0.6 \times 235.359 \times 10%5e%7B-3%7D \times 2388 = 337.222 $$

 

Rn

Mathinline
body--uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 0.6F_uA_%7Bnv%7D \\0.6F_yA_%7Bg%7D \end%7Bmatrix%7D\right] \end%7Baligned%7D + U_%7Bbs%7DF_uA_%7Bnt%7D

Mathinline
body--uriencoded--\normalsize R_%7Bn%7D =337.222+168.72=505.942

AISC 360-16 J4-5

Rn / Ω

Image Removed

Mathinline
body--uriencoded--\normalsize R_n/ \Omega = 505.942/2 =252.971 \; \; \mathrm%7BkN%7D

 

Required

Available

Check

Result

68.159 kN

252,971 kN

0.269

...

Bearing strength limit states of the connection plate that are “shear tear out” and “ovalization of bolt hole” for both end and inner bolts are checked according to AISC 360-16.

dh

20+2=22 mm

 

Lc,edge

Image Removed

Mathinline
body--uriencoded--$$ \normalsize L_%7Bc,edge%7D = L_e - 0.5d_h $$

Mathinline
body--uriencoded--$$ \normalsize L_%7Bc,edge%7D = \left [ \left ( \dfrac%7B378.6-239%7D %7B2%7D \right ) +40-0.5 \times 22 \right ] = 98.8 $$

 

Rn

Image Removed

Mathinline
body--uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2L_c \times t \times F_u \\2.4d \times t \times F_u \end%7Bmatrix%7D\right] \end%7Baligned%7D

AISC 360-16 J3-6a

Rn-edge

Image Removed

Mathinline
body--uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2(98.9)(7.1)(362.846 \times 10%5e%7B-3%7D) \\2.4(20)(7.1)(362.846 \times 10%5e%7B-3%7D) \end%7Bmatrix%7D\right] \end%7Baligned%7D =123.658

 

Lc,spacing

Image Removed

Mathinline
body--uriencoded--$$ \normalsize L_%7Bc,spacing%7D = s - d_h = 79.5 - 22 = 57.5 $$

 

Rn-spacing

Image Removed

Mathinline
body--uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2(57.5)(7.1)(362.846 \times 10%5e%7B-3%7D) \\2.4(20)(7.1)(362.846 \times 10%5e%7B-3%7D) \end%7Bmatrix%7D\right] \end%7Baligned%7D =123.658

 

Rn

 

Image Removed

Mathinline
body--uriencoded--\normalsize R_%7Bn%7D = n_eR_%7Bn,edge%7D + n_sR_%7Bn,spacing%7D

Mathinline
body--uriencoded--\normalsize R_%7Bn%7D = 1 \times 123.658 + 2 \times 123.658 = 370.974 \; \mathrm%7BkN%7D

 

Rn / Ω

Image Removed

Mathinline
body--uriencoded--\normalsize R_n/ \Omega = 370.974 /2 =185.487 \; \; \mathrm%7BkN%7D

 

Required

Available

Check

Result

68.159 kN

185.487 kN

0.367

Bolt Bearing on Angle at Beam

Bearing strength limit states of the connection plate that are “shear tear out” and “ovalization of bolt hole” for both end and inner bolts are checked according to AISC 360-16.

dh

20+2=22 mm

 

Lc,edge

Image Removed

Mathinline
body--uriencoded--$$ \normalsize L_%7Bc,edge%7D = L_e - 0.5d_h $$

Mathinline
body--uriencoded--$$ \normalsize L_%7Bc,edge%7D = 40-0.5 \times 22 = 29 $$

 

Rn

Image Removed

Mathinline
body--uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2L_c \times t \times F_u \\2.4d \times t \times F_u \end%7Bmatrix%7D\right] \end%7Baligned%7D

AISC 360-16 J3-6a

Rn-edge

Image Removed

Mathinline
body--uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2(98.9)(7.1)(362.846 \times 10%5e%7B-3%7D) \\2.4(20)(7.1)(362.846 \times 10%5e%7B-3%7D) \end%7Bmatrix%7D\right] \end%7Baligned%7D =123.658

 

Lc,spacing

Image Removed

Mathinline
body--uriencoded--$$ \normalsize L_%7Bc,spacing%7D = s - d_h = 79.5 - 22 = 57.5 $$

 

Rn-spacing

Image Removed

Mathinline
body--uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2(57.5)(12)(362.846 \times 10%5e%7B-3%7D) \\2.4(20)(12)(362.846 \times 10%5e%7B-3%7D) \end%7Bmatrix%7D\right] \end%7Baligned%7D =208.99

 

Rn

Image Removed

Mathinline
body--uriencoded--$$ \normalsize R_%7Bn%7D = n_eR_%7Bn,edge%7D + n_sR_%7Bn,spacing%7D $$

Mathinline
body--uriencoded--$$ \normalsize R_%7Bn%7D = 1 \times 151.525 + 2 \times 208.99 = 569.505 \; \mathrm%7BkN%7D $$

 

Rn / Ω

Image Removed

Mathinline
body--uriencoded--$$ \normalsize R_n/ \Omega = 569.505 /2 =284.75 \; \; \mathrm%7BkN%7D $$

 

Required

Available

Check

Result

68.159 kN

284.75 kN

0.239

...

In this check, the operation is performed on half of the symmetry axis and is calculated to form a force pair with the required force.

Ab

Image Removed

Mathinline
body--uriencoded--$$ \normalsize A_b = \dfrac%7B \pi d%5e2%7D %7B4%7D = \dfrac%7B \pi 20%5e2%7D %7B4%7D = 314.159 $$

Fn

Image Removed

Mathinline
body--uriencoded--$$ \normalsize F_n = 0.450 F_%7Bıb%7D = 0.450 \times 800 =360 $$
 

Rn

Image Removed

Mathinline
body--uriencoded--$$ \normalsize R_n = F_n A_b = 360 \times 314.159 \times 10%5e%7B-3%7D =113.097 \; \; \mathrm%7BkN%7D $$
 

Rn / Ω

Image Removed

Mathinline
body--uriencoded--$$ \normalsize R_n/ \Omega = 113.097 /2 =56.549 \; \; \mathrm%7BkN%7D $$
 

Required

Available

Check

Result

37.382 kN

56.549 kN

0.661

...

Fe

480000 kN/m2

w

The weld thickness taken from the combination menu is 0.707 * w value. 6 / 0.707 = 8.487 mm

Fu

362.846  N/mm2

t

12 mm

Rnw

Image Removed

Mathinline
body--uriencoded--$$ \normalsize R_%7Bnw%7D = 0.6 F_e 0.707 w = 0.6 \times 480 \times 0.707 \times 8.487 =1728 $$

RnBM

Image Removed

Rn

Image Removed

Mathinline
body--uriencoded--$$ \normalsize R_%7BnBM%7D = 0.6 F_u t = 0.6 \times 362.846 \times 12 =2612.49 $$

Rn

Mathinline
body--uriencoded--$$ \normalsize R_n = min (R_%7Bnw%7D,R_%7BnBM%7D) = 1728 $$

R n / Ω

Required

Available

Check

Result

248.654 kN/m

864 kN/m

0.288

...