Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

How does ideCAD design single angle connection according to AISC 360-16?

...

smin ≥ 3d       

AISC 360-16 J3.3

 

 

s

79.5 mm

 

 

d

20 mm

s =79.5 mm > smin = 3*20=60 mm

Horizontal Edge Distance

The distance from the center of the hole to the edge of the connected part in the horizontal direction is checked per AISC 360-16.

Leh ≥ Le-min     

AISC 360-16 J3.4

 

 

Leh

50.75 mm

Leh ≥ 2d = 2 * 20 = 40 mm conformity check for application

Le-min

26 mm

Minimum distance check according to Table J3.4

Vertical Edge Distance

The distance from the center of the hole to the edge of the connected part in the vertical direction is checked per AISC 360-16.

Lev ≥ Le-min     

AISC 360-16 J3.4

 

 

Lev

40 mm

Leh ≥ 2d = 2 * 20 = 40 mm conformity check for application

Le- min

26 mm

Minimum distance check according to Table J3.4

Weld Size

The minimum size of fillet welds is checked according to AISC 360-16 Table J2.4

a ≥ amin     

AISC 360-16 Table J2.4

 

 

a

6 mm

 

amin

3.5 mm

Table J2.4

Erection Stability

L≥ hb /  2

 

 

L

239 mm

 

 

hb

248.6 mm

L=239 > 248.6/2=124.3 mm

Strength Checks

Angle Shear Yield

In the case of the block shear limit state, the gross area yielding of the tensile plane is checked according to The shear strength of connecting elements in shear is the minimum value obtained according to the limit states of shear yielding and shear rupture. Shear yielding is checked according to AISC 360-16.

Ag

Mathinline
body--uriencoded--$$ \normalsize A_g = L_%7Bp%7D \times t_p =239 \times 12 = 2868 \; \; \mathrm%7Bmm%5e2%7D $$

 

Fy

235.359 N/mm2

 

Rn

Mathinline
body--uriencoded--$$ \normalsize R_n = 0.6F_%7By%7DA_g = 0.6 \times 235.359 \times 10%5e%7B-3%7D \times 2868=405 $$

AISC 360-16 J4-3

Rn / Ω

Mathinline
body$$ \normalsize R_n/ \Omega = 405/1.5 =270 $$

 

Required

Available

Check

Result

68,159 kN

270 kN

0.252

Beam Shear Rupture

In the case of the block shear limit state, the net area rupture of the tensile plane of the connection part The shear strength of connecting elements in shear is the minimum value obtained according to the limit states of shear yielding and shear rupture. Shear rupture is checked according to AISC 360-16.

...

Angle Shear Rupture at Beam

In the case of the block shear limit state, the net area rupture of the tensile plane of the connection part The shear strength of connecting elements in shear is the minimum value obtained according to the limit states of shear yielding and shear rupture. Shear rupture is checked according to AISC 360-16.

...

Ag

Mathinline
body--uriencoded--$$ \normalsize A_%7Bg%7D = (2 \times 79.5 +40) \times 12 = 2388 \; \; \mathrm%7Bmm%5e2%7D $$

 

Anv

Mathinline
body--uriencoded--$$ \normalsize A_%7Bnv%7D = ((2 \times 79.5+40)-2.5 \times 24) \times 12 = 1668 \; \; \mathrm%7Bmm%5e2%7D $$

 

Ant

Mathinline
body--uriencoded--$$ \normalsize A_%7Bnt%7D = 12 \times(50.75-0.5 \times 24) = 465 \; \; \mathrm%7Bmm%5e2%7D $$

 

Fy

235.359 N/mm2

 

Fu

362.846 N/mm2

 

Ubs

1.0

 

 

Mathinline
body--uriencoded--$$ \normalsize U_%7Bbs%7D F_u A_%7Bnt%7D = 1 \times 362.846 \times 10%5e%7B-3%7D \times 465 = 168.72 $$

Mathinline
body--uriencoded--$$ \normalsize 0.6 F_%7Bu%7D A_%7Bnv%7D = 0.6 \times 362.846 \times 10%5e%7B-3%7D \times 1668 = 363.136 $$

Mathinline
body--uriencoded--$$ \normalsize 0.6 F_%7By%7D A_%7Bg%7D = 0.6 \times 235.359 \times 10%5e%7B-3%7D \times 2388 = 337.222 $$

 

Rn

Image Removed

Mathinline
body--uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 0.6F_uA_%7Bnv%7D \\0.6F_yA_%7Bg%7D \end%7Bmatrix%7D\right] \end%7Baligned%7D + U_%7Bbs%7DF_uA_%7Bnt%7D

Mathinline
body--uriencoded--\normalsize R_%7Bn%7D =337.222+168.72=505.942

AISC 360-16 J4-5

Rn / Ω

Mathinline
body--uriencoded--\normalsize R_n/ \Omega = 505.942/2 =252.971 \; \; \mathrm%7BkN%7D

 

...

Required

Available

Check

Result

68.159 kN

185.487 kN

0.367

Bolt Bearing on Angle at Beam

...