Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Bearing strength limit states of the connection plate that are “shear tear out” and “ovalization of bolt hole” for both end and inner bolts are checked according to AISC 360-16.

dh

24+3=27 mm

 

Lc,edge

Image Removed

Rn-edge

Image Removed

Mathinline

 

Rn

Image Removed

AISC 360-16 J3-6a

body--uriencoded--$$ \normalsize L_%7Bc,edge%7D = L_e - 0.5d_h = 55 - 0.5 \times 27 =41.5 $$

 

Rn

Image Removed

Mathinline

 

ΦRn

Image Removed

 

Required

Available

Ratio

Control

0.031 kN

126.392 kN

0.00024

Web Plate Shear Yield

The shear strength of connecting elements in shear is the minimum value obtained according to the limit states of shear yielding and shear rupture. Shear yielding is checked according to AISC 360-16.

Ag

Image Removed

 

Fy

235 N/mm2

body--uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2L_c \times t \times F_u \\2.4d \times t \times F_u \end%7Bmatrix%7D\right] \end%7Baligned%7D

AISC 360-16 J3-6a

Rn-edge

Mathinline
body--uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2(41.5)(9.4)(360 \times 10%5e%7B-3%7D) \\2.4(24)(9.4)(360 \times 10%5e%7B-3%7D) \end%7Bmatrix%7D\right] \end%7Baligned%7D = 168.52

 

Rn

Image Removed

AISC 360-16 J4-3

ΦRn

Image Removed

Mathinline
body--uriencoded--$$ \normalsize R_%7Bn%7D = n_eR_%7Bn,edge%7D =1 \times 168.52 =168.52 $$

 

ΦRn

Mathinline
body$$ \normalsize \varphi R_n = 0.75 \times 168.52 = 126.39 $$

 

Required

Available

Ratio

Control

0.

075

031 kN

916

126.

5

392 kN

0.

0001

00024

Web Plate Shear

...

Yield

The shear strength of connecting elements in shear is the minimum value obtained according to the limit states of shear yielding and shear rupture. Shear rupture yielding is checked according to AISC 360-16.

A

nv

g

Image Removed

Mathinline

 

Ae

Image Removed

body--uriencoded--$$ \normalsize A_%7Bg%7D = h_p \times t_ p = 2 \times 325 \times 10 =6500 $$

 

F

u

y

360

235 N/mm2

 

Rn

Mathinline

Image Removed

AISC 360-16 J4-4

ΦRn

Image Removed

 

Required

Available

Ratio

Control

0.075 kN

771.12 kN

0.0001

Beam Shear Rupture

...

body--uriencoded--$$ \normalsize R_n = 0.6F_%7By%7DA_g = 0.6 \times 235 \times 10%5e%7B-3%7D \times 6500 = 916.5 $$

AISC 360-16 J4-3

ΦRn

Mathinline
body$$ \normalsize \varphi R_n = 1 \times 916.5 = 916.5 $$

 

Required

Available

Ratio

Control

0.075 kN

916.5 kN

0.0001

Web Plate Shear Rupture

The shear strength of connecting elements in shear is the minimum value obtained according to the limit states of shear yielding and shear rupture. Shear rupture is checked according to AISC 360-16.

...

Anv

...

 

...

Ae

...

AISC 360-16.

Anv

Mathinline
body--uriencoded--$$ \normalsize A_%7Bg%7D = 2\times 10 \times ( 325 -3 \times (24 + 3 + 2 ) ) =4760 $$

 

Ae

Mathinline
body--uriencoded--$$ \normalsize A_%7Be%7D = A_n \times U = 4760 \times 1 = 4760 $$

 

Fu

360 N/mm2

 

Rn

Mathinline
body--uriencoded--$$ \normalsize R_n = F_%7Bu%7DA_%7Be%7D = 0.6 \times 360 \times 4760 \times 10%5e%7B-3%7D = 1028.16 $$

AISC 360-16 J4-4

ΦRn

Mathinline
body$$ \normalsize \varphi R_n = 0.75 \times 1028.16 = 771.12 $$

 

Required

Available

Ratio

Control

0.075 kN

771.12 kN

0.0001

Beam Shear Rupture

The shear strength of connecting elements in shear is the minimum value obtained according to the limit states of shear yielding and shear rupture. Shear rupture is checked according to AISC 360-16.

Anv

Mathinline
body--uriencoded--$$ \normalsize A_%7Bn%7D = 9.4 \times ( 450 - 3 \times (24 + 3 + 2 )) =3412.2 $$

 

Ae

Mathinline
body--uriencoded--$$ \normalsize A_%7Be%7D = A_n \times U = 3412.2 \times 1 = 3412.2 $$

 

Fu

360 N/mm2

 

Rn

Mathinline
body--uriencoded--$$ \normalsize R_n = F_%7Bu%7DA_%7Be%7D = 0.6 \times 360 \times 3412.2 \times 10%5e%7B-3%7D = 737.035 $$

AISC 360-16 J4-4

ΦRn

Mathinline
body$$ \normalsize \varphi R_n = 0.75 \times 737.035 = 552.76 $$

 

Required

Available

Ratio

Control

0.075 kN

552.76 kN

0.0001

Web Plate Block Shear

The block shear limit state is checked according to AISC 360-16. All block shear modes combined with tensile failure on one plane and shear failure on a perpendicular plane are checked according to AISC 360-16.

Ag

Mathinline
body--uriencoded--$$ \normalsize A_%7Bg%7D = 2\times 10 \times ( 325 -49.5 ) =5510 $$

 

Anv

Mathinline
body--uriencoded--$$ \normalsize A_%7Bnv%7D = 5510 - 2 \times ( 2.5 \times 29 \times 10 ) =4060 $$

 

Ant

Mathinline
body--uriencoded--$$ \normalsize A_%7Bnt%7D = 10 \times 2 \times ( 55 - 0.5 \times 29 ) = 810 $$

 

Fy

235 N/mm2

 

Fu

360 N/mm2

 

Rn

Image Removed

AISC 360-16 J4-4

ΦRn

Image Removed

 

Required

Available

Ratio

Control

0.075 kN

552.76 kN

0.0001

Web Plate Block Shear

The block shear limit state is checked according to AISC 360-16. All block shear modes combined with tensile failure on one plane and shear failure on a perpendicular plane are checked according to AISC 360-16.

Ag

Image Removed

 

Anv

Image Removed

 

Ant

Image Removed

 

Fy

235 N/mm2

 

Fu

360 N/mm2

 

Ubs

1.0

 

 

Image Removed

 

Rn

Image Removed

Ubs

1.0

 

 

Mathinline
body--uriencoded--$$ \normalsize U_%7Bbs%7D F_u A_%7Bnt%7D = 1 \times 360 \times 10%5e%7B-3%7D \times 810 = 291.6 $$

Mathinline
body--uriencoded--$$ \normalsize 0.6 F_%7Bu%7D A_%7Bnv%7D = 0.6 \times 360 \times 10%5e%7B-3%7D \times 4060 = 876.96 $$

Mathinline
body--uriencoded--$$ \normalsize 0.6 F_%7By%7D A_%7Bg%7D = 0.6 \times 235 \times 10%5e%7B-3%7D \times 5510 = 776.91 $$

 

Rn

Mathinline
body--uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 0.6F_uA_%7Bnv%7D \\0.6F_yA_%7Bg%7D \end%7Bmatrix%7D\right] \end%7Baligned%7D + U_%7Bbs%7DF_uA_%7Bnt%7D = 776.91 + 291.6 =1068.51

AISC 360-16 J4-5

ΦRn

Image Removed

Mathinline
body$$ \normalsize \varphi R_n = 0.75 \times 1068.51 = 801.38 $$

 

Required

Available

Ratio

Control

0.075 kN

801.38 kN

0.0001

...