Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

The required plate thickness is determined according to AISC Steel Design Guide 1 Eq.3.3.15a.

fc

25000 kN/m2

 

A1

Image Removed

Mathinline
body--uriencoded--$$ \normalsize A_%7B1%7D = 900 \times 500 \times 10%5e%7B-6%7D = 0.45 $$

 

A2

Image Removed

Mathinline
body--uriencoded--$$ \normalsize A_%7B2%7D = 900 \times 500 \times 10%5e%7B-6%7D = 0.45 $$

 

qmax

Image Removed

Mathinline
body--uriencoded--$$ \normalsize q_%7Bmax%7D = \varphi_c f_%7Bp(max)%7D B = 0.65 \times 21250 \times 0.5 = 6906.25 $$

 

fp(max)

Image Removed

Mathinline
body--uriencoded--$$ \normalsize f_%7Bp(max)%7D = 0.85 f_c \sqrt %7B \dfrac%7BA_2%7D%7BA_1%7D %7D \leq 1.7f_c $$

 

fp(max)

Image Removed

Mathinline
body--uriencoded--$$ \normalsize f_%7Bp(max)%7D = 0.85 \times 25000 \sqrt %7B \dfrac%7B0.45%7D%7B0.45%7D %7D = 21250 \leq 1.7 \times 25000 =42500 $$

 

e

Image Removed

Mathinline
body--uriencoded--$$ \normalsize e = \dfrac%7BM%7D%7BP%7D = \dfrac%7B365.17%7D%7B739.22%7D =493.994 $$

 

ecrit

Image Removed

Mathinline
body--uriencoded--$$ \normalsize e_%7Bcrit%7D = \dfrac%7BN%7D%7B2%7D - \dfrac%7BP%7D%7B2q_%7Bmax%7D%7D = \dfrac%7B900%7D%7B2%7D - \dfrac%7B739.22%7D%7B2 \times 6906.25%7D =396.482 $$

 

Y

Image Removed

Mathinline
body--uriencoded--$$ \normalsize Y = \left ( f + \dfrac%7BN%7D%7B2%7D \right ) \mp \sqrt%7B \left ( f +\dfrac%7BN%7D%7B2%7D \right )%5e2 - \dfrac%7B2P (e + f)%7D %7Bq_%7Bmax%7D%7D %7D $$

 

Y

Image Removed

Mathinline
body--uriencoded--$$ \small Y = \left ( 405 + \dfrac%7B900 %7D%7B2%7D \right ) \mp \sqrt%7B \left ( 405 +\dfrac%7B900%7D%7B2%7D \right )%5e2 - \dfrac%7B2 \times 739.22 (493.994 + 405)%7D %7B6906.25%7D %7D $$
Mathinline
body$$ \small Y =121.123 $$

 

f

Image Removed

Mathinline
body--uriencoded--$$ \normalsize f = \dfrac%7BN%7D%7B2%7D - l_e = \dfrac%7B900%7D%7B2%7D - 45 = 405 $$

 

le

45 mm

 

l

max(m,n)=141.25 

 

m

Image Removed

Mathinline
body--uriencoded--$$ \normalsize m = \dfrac%7BN - 0.95h%7D%7B2%7D = \dfrac%7B900 -0.95 \times 650%7D%7B2%7D =141.25 $$

 

n

Image Removed

Mathinline
body--uriencoded--$$ \normalsize n = \dfrac%7BB - 0.8b%7D%7B2%7D = \dfrac%7B500 -0.8 \times 300%7D%7B2%7D =130 $$

 

h

650 mm

 

b

300 mm

 

N

900 mm

 

B

500 mm

 

M

365.17 kNm

 

P

739.22 kN

 

y

355 N/mm2

 

treq

Image Removed

Mathinline
body--uriencoded--$$ \normalsize t_%7Breq%7D = 2 \sqrt %7B \dfrac%7B \varphi_c f_%7Bp(max) %7D Y( l - \dfrac%7BY%7D%7B2%7D ) %7D%7B\varphi F_y %7D %7D =41.11 $$
 

AISC DG-1-2nd

3.3.15.a

Required

Available

Ratio

Control

41.11 mm

42 mm

0.979

...

The required base plate thickness for tension is determined according to AISC Steel Design Guide 1 Eq.3.4.7a.

fc

25000 kN/m2

 

A1

Image Removed

Mathinline
body--uriencoded--$$ \normalsize A_%7B1%7D = 900 \times 500 \times 10%5e%7B-6%7D = 0.45 $$

 

A2

Image Removed

Mathinline
body--uriencoded--$$ \normalsize A_%7B2%7D = 900 \times 500 \times 10%5e%7B-6%7D = 0.45 $$

 

qmax

Image Removed

Mathinline
body--uriencoded--$$ \normalsize q_%7Bmax%7D = \varphi_c f_%7Bp(max)%7D B = 0.65 \times 21250 \times 0.5 = 6906.25 $$

 

e

Image Removed

Mathinline
body--uriencoded--$$ \normalsize e = \dfrac%7BM%7D%7BP%7D = \dfrac%7B365.17%7D%7B739.22%7D =493.994 $$

 

ecrit

Image Removed

Mathinline
body--uriencoded--$$ \normalsize e_%7Bcrit%7D = \dfrac%7BN%7D%7B2%7D - \dfrac%7BP%7D%7B2q_%7Bmax%7D%7D = \dfrac%7B900%7D%7B2%7D - \dfrac%7B739.22%7D%7B2 \times 6906.25%7D =396.482 $$

 

T

Image Removed

Mathinline
body--uriencoded--$$ \normalsize T = q_%7Bmax%7D Y - P = 6906.25 \times 121.123 - 739.22 = 97.286 $$

 

Y

Image Removed

Mathinline
body--uriencoded--$$ \normalsize Y = \left ( f + \dfrac%7BN%7D%7B2%7D \right ) \mp \sqrt%7B \left ( f +\dfrac%7BN%7D%7B2%7D \right )%5e2 - \dfrac%7B2P (e + f)%7D %7Bq_%7Bmax%7D%7D %7D $$

 

Y

Image Removed

Mathinline
body--uriencoded--$$ \small Y = \left ( 405 + \dfrac%7B900 %7D%7B2%7D \right ) \mp \sqrt%7B \left ( 405 +\dfrac%7B900%7D%7B2%7D \right )%5e2 - \dfrac%7B2 \times 739.22 (493.994 + 405)%7D %7B6906.25%7D %7D $$

Mathinline
body$$ \small Y =121.123 $$

 

f

Image Removed

Mathinline
body--uriencoded--$$ \normalsize f = \dfrac%7BN%7D%7B2%7D - l_e = \dfrac%7B900%7D%7B2%7D - 45 = 405 $$

 

x

Image Removed

Mathinline
body$$ \normalsize x = m - l_e = 141.25 - 45 = 96.25 $$

 

le

45 mm

 

m

Image Removed

Mathinline
body--uriencoded--$$ \normalsize m = \dfrac%7BN - 0.95h%7D%7B2%7D = \dfrac%7B900 -0.95 \times 650%7D%7B2%7D =141.25 $$

 

h

650 mm

 

N

900 mm

 

B

500 mm

 

M

365.17 kNm

 

P

739.22 kN

 

Fy

355 N/mm2

 

treq

Image Removed

Mathinline
body--uriencoded--$$ \normalsize t_%7Breq%7D = 2 \sqrt %7B \dfrac%7B Tx %7D%7B\varphi F_y B %7D %7D = 2 \sqrt %7B \dfrac%7B 97.288 \times 96.25 %7D%7B 0.9 \times 355 \times 500 %7D %7D =15.312 $$

AISC DG-1-2nd

3.4.7a

Required

Available

Ratio

Control

15.312 mm

42 mm

0.365

...

The limit state of the anchor rod tension rupture is checked according to AISC 360-16.

Ab

Image Removed

Mathinline
body--uriencoded--$$ \normalsize A_b = \dfrac%7B \pi d%5e2%7D %7B4%7D = \dfrac%7B \pi 24%5e2%7D %7B4%7D = 452.389 $$

Fn

750000 kN/m2 

Rn

Image Removed

Mathinline
body--uriencoded--$$ \normalsize R_n = F_n A_b = 750 \times 452.389 \times 10%5e%7B-3%7D =339.292 $$

AISC 360-16 J3-1

ΦRn

Image Removed

Mathinline
body--uriencoded--$$ \normalsize \varphi R_n = 0.75 \times 339.292 = 254.469 \; \; \mathrm%7BkN%7D $$
 

Required

Available

Ratio

Control

28.779 kN

254.469 kN

0.113

...

Ψ

1.0

ACI 318M-08 D.5.3.6

Np

ACI 318M-08 (D-15)

Abgr

7401.592 mm2

 

fc

25000 kN/m2

 

Rn

ACI 318M-08 (D-14)

ΦRn

 

...