Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Joint Geometry

...

GEOMETRY CONTROLS

Welding Thickness

...

a ≥ a min     

...

ÇYTHYEDY 13.3.7

...

 

...

 

...

a

...

How does ideCAD design unstiffened seated connection according to AISC 360-16?

...

Tip
  • Unstiffened seated connection limit states and geometry checks are done automatically according to AISC 360-16.

Tip
  • The block shear limit state is checked automatically according to AISC 360-16.

Tip
  • Limit states of single plate web yielding, web crippling and weld strength are checked automatically.

...

Connection Geometry

...

Geometry Checks

Weld Size

The minimum size of fillet welds is checked according to AISC 360-16 Table J2.4

w ≥ wmin     

AISC 360-16 Table J2.4

 

 

w

11.315 mm

 

a

wmin

3.

5 mm

Table

13

J2.4

Strength

...

Checks

...

Beam Web Yielding

The limit state of web local yielding for single-concentrated forces and both components of double-concentrated forces are checked according to AISC 360-16.

tw

7.1 mm

 

lb

25.7 mm

 

to

to

10.7 + 15 = 25.7 mm (Beam

head

flange + Beam

head

flange radius)

 

Fy

235.359 N/mm2

 

Rn

Mathinline
body$$ \normalsize R_n

Image RemovedÇYTHYEDY 13.25b

= F_yt_w(2.5k + l_b) $$
Mathinline
body--uriencoded--$$ \normalsize R_n = 235.359 \times 10%5e%7B-3%7D \times 7.1 \times ( 2.5 \times 25.7 + 25.7 ) = 150.31 \; \mathrm%7BkN%7D $$

AISC 360-16 Eq. J10-3

Rn / Ω

Image Removed

Mathinline
body--uriencoded--$$ \normalsize R_n/ \Omega = 150.31 / 1.5 =100.207 \; \; \mathrm%7BkN%7D $$

 

Required

Ready

Available

Rate

Check

Control

Result

73.288 kN

100

,

.207 kN

0.

731

732

Beam

...

Web Crippling

The limit state of web local crippling for single-concentrated forces and both components of double-concentrated forces are checked according to AISC 360-16.

tw

7.1 mm

 

tf

tf

10.7 mm

 

lb

25.7 mm

 

d

300 mm

 

IS

E

205939650 kN/m2

 

Fy

235.359 N/mm2

 

Rn

Image Removed

ÇYTHYEDY 13.26b

 

Image Removed

Mathinline
body--uriencoded--$$ \normalsize R_n = 0.4t%5e2_w \left [1+ 3 \left ( \dfrac%7Bl_b%7D %7Bd%7D \right ) \left ( \dfrac%7Bt_w%7D %7Bt_f%7D \right )%5e%7B1.5%7D \right] \sqrt%7B \dfrac%7BEF_%7Byw%7Dt_f%7D %7Bt_w%7D %7D $$

AISC 360-16 Eq. J10-5a

 

Mathinline
body--uriencoded--$$ \small R_n = 0.4 \times 7.1%5e2 \left [1+ 3 \left ( \dfrac%7B25.7%7D %7B300%7D \right ) \left ( \dfrac%7B7.1%7D %7B10.7%7D \right )%5e%7B1.5%7D \right] \sqrt%7B \dfrac%7B205939650 \times 235.359 \times 10%5e%7B-3%7D \times 10.7 %7D %7B7.1%7D %7D $$
Mathinline
body--uriencoded--$$ \small R_n = 196.275 \; \mathrm%7BkN%7D $$

 

Rn / Ω

Image Removed

Mathinline
body--uriencoded--$$ \normalsize R_n/ \Omega = 196.275 / 2 =98.138 \; \; \mathrm%7BkN%7D $$

 

Required

Ready

Available

Rate

Check

Control

Result

73.288 kN

98.138 kN

0.747

Angle

...

Shear Yield

The shear strength of connecting elements in shear is the minimum value obtained according to the limit states of shear yielding and shear rupture. Shear yielding is checked according to AISC 360-16.

Ag

Image Removed

Mathinline
body--uriencoded--$$ \normalsize A_g = L_%7Bp%7D \times t_p =150 \times 10 = 1500 \; \; \mathrm%7Bmm%5e2%7D $$

 

Fy

235.359 N/mm2

 

Rn

Mathinline

Image RemovedÇYTHYEDY 13.17

body--uriencoded--$$ \normalsize R_n = 0.6F_%7By%7DA_g = 0.6 \times 235.359 \times 10%5e%7B-3%7D \times 1500 = 211.823 \; \; \mathrm%7BkN%7D $$

AISC 360-16 J4-3

Rn / Ω

Image Removed

Mathinline

 

Required

Ready

Rate

Control

Required

Ready

Rate

Control

body--uriencoded--$$ \normalsize R_n/ \Omega = 211.823 / 1.5 = 141.215 \; \; \mathrm%7BkN%7D $$

 

Required

Available

Check

Result

73.288 kN

141

,

.215 kN

0.519

Weld Strength at Support

...

Fe

Fe

480000 kN/m2

in

w

11.315 mm

Fu

Fu

362.846  N/mm2

l

110 mm

is

60mm

Rn

Image Removed

e

60mm

Rn

Mathinline
body--uriencoded--$$ \normalsize R_n = \dfrac%7B 2 l%5e2 0.6 Fe 0.707 w%7D %7B\sqrt%7Bl%5e2 + 36 e%5e2%7D %7D $$

Mathinline
body--uriencoded--$$ \normalsize R_n = \dfrac%7B 2 \times 110%5e2 \times 0.6 \times 480 \times 10%5e%7B-3%7D \times 0.707 \times 11.315%7D %7B\sqrt%7B110%5e2 + 36 \times 60%5e2%7D %7D = 148.114\; \mathrm%7BkN%7D $$

Rn / Ω

Image Removed

Mathinline
body--uriencoded--$$ \normalsize R_n/ \Omega = 148.114 / 2 = 74.057 \; \; \mathrm%7BkN%7D $$

Required

Ready

Available

Rate

Check

Control

Result

73.288 kN

74.06 kN

0.990

...

Child pages (Children Display)

...