Unstiffened Seated Connection with How does ideCAD design unstiffened seated connection according to AISC 360-16?
...
...
...
Connection Geometry
...
Geometry Checks
Weld Size
The minimum size of fillet welds is checked according to AISC 360-16 Table J2.4
w ≥ wmin | AISC 360-16 Table J2.4 | | |
w | 11.315 mm | | √ |
wmin | 5 mm | Table J2.4 | √ |
Strength Checks
Beam Web Yielding
The limit state of web local yielding for single-concentrated forces and both components of double-concentrated forces are checked according to AISC 360-16.
tw | 7.1 mm | |
lb | 25.7 mm | |
to | 10.7 + 15 = 25.7 mm (Beam flange + Beam flange radius) | |
Fy | 235.359 N/mm2 | |
Rn | Image Removed Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = 235.359 \times 10%5e%7B-3%7D \times 7.1 \times ( 2.5 \times 25.7 + 25.7 ) = 150.31 \; \mathrm%7BkN%7D $$ |
---|
|
| AISC 360-16 Eq. J10-3 |
Rn / Ω Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n/ \Omega = 150.31 / 1.5 =100.207 \; \; \mathrm%7BkN%7D $$ |
---|
|
| |
Required | Available | Check | Result |
---|
73.288 kN | 100.207 kN | 0.732 | √ |
Beam Web Crippling
The limit state of web local crippling for single-concentrated forces and both components of double-concentrated forces are checked according to AISC 360-16.
tw | 7.1 mm | |
tf | 10.7 mm | |
lb | 25.7 mm | |
d | 300 mm | |
E | 205939650 kN/m2 | |
Fy | 235.359 N/mm2 | |
Rn Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = 0.4t%5e2_w \left [1+ 3 \left ( \dfrac%7Bl_b%7D %7Bd%7D \right ) \left ( \dfrac%7Bt_w%7D %7Bt_f%7D \right )%5e%7B1.5%7D \right] \sqrt%7B \dfrac%7BEF_%7Byw%7Dt_f%7D %7Bt_w%7D %7D $$ |
---|
|
| AISC 360-16 Eq. J10-5a |
Image Removed | Mathinline |
---|
body | --uriencoded--$$ \small R_n = 0.4 \times 7.1%5e2 \left [1+ 3 \left ( \dfrac%7B25.7%7D %7B300%7D \right ) \left ( \dfrac%7B7.1%7D %7B10.7%7D \right )%5e%7B1.5%7D \right] \sqrt%7B \dfrac%7B205939650 \times 235.359 \times 10%5e%7B-3%7D \times 10.7 %7D %7B7.1%7D %7D $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \small R_n = 196.275 \; \mathrm%7BkN%7D $$ |
---|
|
| |
Rn / Ω Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n/ \Omega = 196.275 / 2 =98.138 \; \; \mathrm%7BkN%7D $$ |
---|
|
| |
Required | Available | Check | Result |
---|
73.288 kN | 98.138 kN | 0.747 | √ |
Angle Shear Yield
The shear strength of connecting elements in shear is the minimum value obtained according to the limit states of shear yielding and shear rupture. Shear yielding is checked according to AISC 360-16.
Ag Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_g = L_%7Bp%7D \times t_p =150 \times 10 = 1500 \; \; \mathrm%7Bmm%5e2%7D $$ |
---|
|
| |
Fy | 235.359 N/mm2 | |
Rn Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = 0.6F_%7By%7DA_g = 0.6 \times 235.359 \times 10%5e%7B-3%7D \times 1500 = 211.823 \; \; \mathrm%7BkN%7D $$ |
---|
|
| AISC 360-16 J4-3 |
Rn / Ω Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n/ \Omega = 211.823 / 1.5 = 141.215 \; \; \mathrm%7BkN%7D $$ |
---|
|
| |
Required | Available | Check | Result |
---|
73.288 kN | 141.215 kN | 0.519 | √ |
Weld Strength at Support
Fe | 480000 kN/m2 |
w | 11.315 mm |
Fu | 362.846 N/mm2 |
l | 110 mm |
e | 60mm |
Rn | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n |
---|
| Image Removed= \dfrac%7B 2 l%5e2 0.6 Fe 0.707 w%7D %7B\sqrt%7Bl%5e2 + 36 e%5e2%7D %7D $$ |
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = \dfrac%7B 2 \times 110%5e2 \times 0.6 \times 480 \times 10%5e%7B-3%7D \times 0.707 \times 11.315%7D %7B\sqrt%7B110%5e2 + 36 \times 60%5e2%7D %7D = 148.114\; \mathrm%7BkN%7D $$ |
---|
|
|
Rn / Ω Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n/ \Omega = 148.114 / 2 = 74.057 \; \; \mathrm%7BkN%7D $$ |
---|
|
|
Required | Available | Check | Result |
---|
73.288 kN | 74.06 kN | 0.990 | √ |
...