...
tw | 7.1 mm | |
lb | 25.7 mm | |
to | 10.7 + 15 = 25.7 mm (Beam flange + Beam flange radius) | |
Fy | 235.359 N/mm2 | |
Rn Image Removed | Mathinline |
---|
body | $$ \normalsize R_n = F_yt_w(2.5k + l_b) $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = 235.359 \times 10%5e%7B-3%7D \times 7.1 \times ( 2.5 \times 25.7 + 25.7 ) = 150.31 \; \mathrm%7BkN%7D $$ |
---|
|
| AISC 360-16 Eq. J10-3 |
Rn / Ω Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n/ \Omega = 150.31 / 1.5 =100.207 \; \; \mathrm%7BkN%7D $$ |
---|
|
| |
Required | Available | Check | Result |
---|
73.288 kN | 100.207 kN | 0.732 | √ |
...
tw | 7.1 mm | |
tf | 10.7 mm | |
lb | 25.7 mm | |
d | 300 mm | |
E | 205939650 kN/m2 | |
Fy | 235.359 N/mm2 | |
Rn Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = 0.4t%5e2_w \left [1+ 3 \left ( \dfrac%7Bl_b%7D %7Bd%7D \right ) \left ( \dfrac%7Bt_w%7D %7Bt_f%7D \right )%5e%7B1.5%7D \right] \sqrt%7B \dfrac%7BEF_%7Byw%7Dt_f%7D %7Bt_w%7D %7D $$ |
---|
|
| AISC 360-16 Eq. J10-5a |
Image Removed | Mathinline |
---|
body | --uriencoded--$$ \small R_n = 0.4 \times 7.1%5e2 \left [1+ 3 \left ( \dfrac%7B25.7%7D %7B300%7D \right ) \left ( \dfrac%7B7.1%7D %7B10.7%7D \right )%5e%7B1.5%7D \right] \sqrt%7B \dfrac%7B205939650 \times 235.359 \times 10%5e%7B-3%7D \times 10.7 %7D %7B7.1%7D %7D $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \small R_n = 196.275 \; \mathrm%7BkN%7D $$ |
---|
|
| |
Rn / Ω Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n/ \Omega = 196.275 / 2 =98.138 \; \; \mathrm%7BkN%7D $$ |
---|
|
| |
Required | Available | Check | Result |
---|
73.288 kN | 98.138 kN | 0.747 | √ |
Angle Shear Yield
The gross area yielding of the connection part shear strength of connecting elements in shear is the minimum value obtained according to the limit states of shear yielding and shear rupture. Shear yielding is checked according to AISC 360-16.
Ag Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_g = L_%7Bp%7D \times t_p =150 \times 10 = 1500 \; \; \mathrm%7Bmm%5e2%7D $$ |
---|
|
| |
Fy | 235.359 N/mm2 | |
Rn Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = 0.6F_%7By%7DA_g = 0.6 \times 235.359 \times 10%5e%7B-3%7D \times 1500 = 211.823 \; \; \mathrm%7BkN%7D $$ |
---|
|
| AISC 360-16 J4-3 |
Rn / Ω Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n/ \Omega = 211.823 / 1.5 = 141.215 \; \; \mathrm%7BkN%7D $$ |
---|
|
| |
Required | Available | Check | Result |
---|
73.288 kN | 141.215 kN | 0.519 | √ |
...
Fe | 480000 kN/m2 |
w | 11.315 mm |
Fu | 362.846 N/mm2 |
l | 110 mm |
e | 60mm |
Rn Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = \dfrac%7B 2 l%5e2 0.6 Fe 0.707 w%7D %7B\sqrt%7Bl%5e2 + 36 e%5e2%7D %7D $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = \dfrac%7B 2 \times 110%5e2 \times 0.6 \times 480 \times 10%5e%7B-3%7D \times 0.707 \times 11.315%7D %7B\sqrt%7B110%5e2 + 36 \times 60%5e2%7D %7D = 148.114\; \mathrm%7BkN%7D $$ |
---|
|
|
Rn / Ω Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n/ \Omega = 148.114 / 2 = 74.057 \; \; \mathrm%7BkN%7D $$ |
---|
|
|
Required | Available | Check | Result |
---|
73.288 kN | 74.06 kN | 0.990 | √ |
...