...
In this check, the operation is performed on half of the symmetry axis and is calculated to form a force pair with the required force.
Ab Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_b = \dfrac%7B \pi d%5e2%7D %7B4%7D = \dfrac%7B \pi 16%5e2%7D %7B4%7D = 201.062\; \mathrm%7Bmm%5e2%7D $$ |
---|
|
| |
Fnv | Image Removed | | Rn | Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize F_%7Bnv%7D=0.450F_%7Bub%7D=0.450 \times 800 = 360\; \mathrm%7BN/mm%7D $$ |
---|
|
| |
Rn | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = F_%7Bn%7D \times A_b = R_%7Bnv%7D = n ( m F_%7Bnv%7D A_b) $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = 4 \times (1 \times 360 \times 201.062 \times 10%5e%7B-3%7D )%7D = 289.53 \; \; \mathrm%7BkN%7D $$ |
---|
|
| AISC 360-16 J3-1 |
R n / Ω Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n/ \Omega = 289.53 / 2 = 144.765 \; \; \mathrm%7BkN%7D $$ |
---|
|
| |
Required | Available | Check | Result |
---|
31.564 kN | 144.765 kN | 0.218 | √ |
...
Bearing strength limit states of the connection part that are “shear tear out” and “ovalization of bolt hole” for both end and inner bolts are checked according to AISC 360-16.
dh | 16+2=18 mm | |
Rn Image Removed | Mathinline |
---|
body | --uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2L_c \times t \times F_u \\2.4d \times t \times F_u \end%7Bmatrix%7D\right] \end%7Baligned%7D |
---|
|
| AISC 360-16 J3-6a |
Lc,spacing Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize L_%7Bc,spacing%7D = s - d_h = 60 - 18 =42\; \mathrm%7Bmm%7D $$ |
---|
|
| |
Rn-spacing Image Removed | Mathinline |
---|
body | --uriencoded--\begin%7Baligned%7D\normalsize R_%7Bn%7D=\mathrm%7Bmin%7D\left[\begin%7Bmatrix%7D 1.2 ( 42) ( 7.1 )(362.846 \times 10%5e%7B-3%7D) \\ 2.4 ( 16 ) ( 7.1 )(362.846 \times 10%5e%7B-3%7D) \end%7Bmatrix%7D\right]\end%7Baligned%7D = 98.926 \; \mathrm%7BkN%7D |
---|
|
| |
Rn / Ω Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n/ \Omega = 395.704 / 2 = 197.852 \; \; \mathrm%7BkN%7D $$ |
---|
|
| |
Required | Available | Check | Result |
---|
31.564 kN | 197,853 kN | 0.160 | √ |
...
Bearing strength limit states of the connection part that are “shear tear out” and “ovalization of bolt hole” for both end and inner bolts are checked according to AISC 360-16.
dh | 16+2=18 mm | |
Lc,edge Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize L_%7Bc,edge%7D = L_e - 0.5d_h = 45 -0.5 \times 18 = 36\; \mathrm%7Bmm%7D $$ |
---|
|
| |
Rn Image Removed | Mathinline |
---|
body | --uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2L_c \times t \times F_u \\2.4d \times t \times F_u \end%7Bmatrix%7D\right] \end%7Baligned%7D |
---|
|
| AISC 360-16 J3-6a |
Rn-edge Image Removed | Mathinline |
---|
body | --uriencoded--\begin%7Baligned%7D\normalsize R_%7Bn%7D=\mathrm%7Bmin%7D\left[\begin%7Bmatrix%7D 1.2 ( 36 ) ( 12 )(362.846 \times 10%5e%7B-3%7D) \\ 2.4 ( 16 ) (12 )(362.846 \times 10%5e%7B-3%7D) \end%7Bmatrix%7D\right]\end%7Baligned%7D = 167.199\; \mathrm%7BkN%7D |
---|
|
| |
Lc,spacing Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize L_%7Bc,spacing%7D = s - d_h = 60 - 18 =42 $$ |
---|
|
| |
Rn-spacing Image Removed | Mathinline |
---|
body | --uriencoded--\begin%7Baligned%7D\normalsize R_%7Bn%7D=\mathrm%7Bmin%7D\left[\begin%7Bmatrix%7D 1.2 ( 42 ) ( 12 )(362.846 \times 10%5e%7B-3%7D) \\ 2.4 ( 16 ) (12 )(362.846 \times 10%5e%7B-3%7D) \end%7Bmatrix%7D\right]\end%7Baligned%7D = 167.199 \; \mathrm%7BkN%7D |
---|
|
| |
Rn Image Removed | Mathinline |
---|
body | --uriencoded--\normalsize R_%7Bn%7D = n_e \times R_%7Bn,edge%7D + n_s \times R_%7Bn,spacing%7D |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize R_%7Bn%7D = 4 \times 167.199 = 668.797 \; \mathrm%7BkN%7D $$ |
---|
|
| |
Rn / Ω Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n/ \Omega = 668.797 / 2 = 334.399 \; \; \mathrm%7BkN%7D $$ |
---|
|
| |
Required | Available | Check | Result |
---|
31.564 kN | 334,399 kN | 0.094 | √ |
Beam Shear Yield
In the case of the block shear limit state, the gross area yielding of the tensile plane The shear strength of connecting elements in shear is the minimum value obtained according to the limit states of shear yielding and shear rupture. Shear yielding is checked according to AISC 360-16.
Ag Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_%7Bg%7D = L_pt_p = ( 240 - 30.7) \times 6.2 = 1297.66 \; \; \mathrm%7Bmm%5e2%7D $$ |
---|
|
| |
Fy | 235.359 N/mm2 | |
Rn Image Removed | Mathinline |
---|
body | --uriencoded--\normalsize R_n = 0.6F_%7By%7D A_g |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = 0.6 \times 235.359 \times 10%5e%7B-3%7D \times 1297.66 = 183.25 \; \; \mathrm%7BkN%7D $$ |
---|
|
| AISC 360-16 J4-3 |
Rn / Ω Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n/ \Omega = 183.25 / 1.5 = 122.166 \; \; \mathrm%7BkN%7D $$ |
---|
|
| |
Required | Available | Check | Result |
---|
31.564 kN | 122.166 kN | 0.258 | √ |
Plate Shear Yield
The gross area yielding of the tensile plane shear strength of connecting elements in shear is the minimum value obtained according to the limit states of shear yielding and shear rupture. Shear yielding is checked according to AISC 360-16.
Ag Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_%7Bg%7D = L_pt_p = 2 \times 150 \times 12 = 3600 \; \; \mathrm%7Bmm%5e2%7D $$ |
---|
|
| |
Fy | 235.359 N/mm2 | |
Rn | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n |
---|
| Image Removed Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = 0.6 \times 235.359 \times 10%5e%7B-3%7D \times 3600 = 508.16 \; \; \mathrm%7BkN%7D $$ |
---|
|
| AISC 360-16 J4-3 |
Rn / Ω Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n/ \Omega = 508.16 / 1.5 = 338.77 \; \; \mathrm%7BkN%7D $$ |
---|
|
| |
Required | Available | Check | Result |
---|
31.564 kN | 338.77 kN | 0.093 | √ |
Plate Shear Rupture
The net area rupture of the tensile plane of the connection part shear strength of connecting elements in shear is the minimum value obtained according to the limit states of shear yielding and shear rupture. Shear rupture is checked according to AISC 360-16.
Anv Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_%7Bnv%7D = t_p(d_b-n_bd_e) = 2 \times 12 \times (150 - 2 \times 20) = 2640 \; \; \mathrm%7Bmm%5e2%7D $$ |
---|
|
| |
Fu | 362.846 N/mm2 | |
Rn Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = 0.6F_%7Bu%7D A_%7Bnv%7D $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = 0.6 \times 362.846 \times 10%5e%7B-3%7D \times 2640 = 574.75 \; \; \mathrm%7BkN%7D $$ |
---|
|
| AISC 360-16 J4-4 |
Rn / Ω Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n/ \Omega = 574.75 / 2 = 287.374 \; \; \mathrm%7BkN%7D $$ |
---|
|
| |
Required | Available | Check | Result |
---|
31.564 kN | 287,374 kN | 0.110 | √ |
...
The block shear limit state is checked according to AISC 360-16. All block shear modes combined with tensile failure on one plane and shear failure on a perpendicular plane are checked according to AISC 360-16.
Ag Image Removed | Mathinline |
---|
body | --uriencoded--\normalsize A_%7Bg%7D = (60 + 45) \times 12 \times 2 = 2520 \; \; \mathrm%7Bmm%5e2%7D |
---|
|
| |
Anv Image Removed | Mathinline |
---|
body | --uriencoded--\normalsize A_%7Bnv%7D = ((60 + 45)-1.5 \times 20) \times 12 \times 2 = 1800 \; \; \mathrm%7Bmm%5e2%7D |
---|
|
| |
Ant Image Removed | Mathinline |
---|
body | --uriencoded--\normalsize A_%7Bnt%7D = 2 \times 12 \times (40-0.5 \times 20) = 720 \; \; \mathrm%7Bmm%5e2%7D |
---|
|
| |
Fy | 235.359 N/mm2 | |
Fu | 362.846 N/mm2 | |
Ubs | 1.0 | |
Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize U_%7Bbs%7DF_%7Bu%7DA_%7Bnt%7D=1 \times 362.846 \times 10%5e%7B-3%7D \times 720 = 261. 25 $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize 0.6 F_%7Bu%7D A_%7Bnv%7D = 0.6 \times 362.846 \times 10%5e%7B-3%7D \times 1800 = 391.874 $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize 0.6 F_%7By%7D A_%7Bg%7D = 0.6 \times 235.359 \times 10%5e%7B-3%7D \times 2520 = 355.863 $$ |
---|
|
| |
Rn Image Removed | Mathinline |
---|
body | --uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 0.6F_uA_%7Bnv%7D \\0.6F_yA_%7Bg%7D \end%7Bmatrix%7D\right] \end%7Baligned%7D + U_%7Bbs%7DF_uA_%7Bnt%7D |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize R_%7Bn%7D =355.863 + 261.25 = 617.113 \; \mathrm%7BkN%7D $$ |
---|
|
| AISC 360-16 J4-5 |
Rn / Ω Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n/ \Omega = 617.113 / 2 = 308.556 \; \; \mathrm%7BkN%7D $$ |
---|
|
| |
Required | Available | Check | Result |
---|
31.564 kN | 308.556 kN | 0.102 | √ |
Welding Strength
Fe | 480000 kN480 N/mmm2 |
w | 7.07 mm |
Fu | 362.846 N/mm2 |
t | 6.2 mm |
l | 135.856 mm |
Rnw | Image Removed |
RnBM | Image Removed |
Rn | Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_%7Bnw%7D = 0.6 \times F_e \times 2 \times 0.707 \times w \times l $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize R_%7Bnw%7D = 0.6 \times 480 \times 2 \times 0.707 \times 7.072 \times 135.856 \times 10%5e%7B-3%7D = 391.258 \; \mathrm%7BkN%7D $$ |
---|
|
|
RnBM | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_%7BnBM%7D = 0.6 F_u t l = 0.6 \times 362.846 \times 6.2 \times 135.856 \times 10%5e%7B-3%7D = 183.376\; \mathrm%7BkN%7D $$ |
---|
|
|
Rn | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = min (R_%7Bnw%7D,R_%7BnBM%7D) = 183.376\; \mathrm%7BkN%7D $$ |
---|
|
|
Rn / Ω Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n/ \Omega = 183.376 / 2 = 91.688 \; \; \mathrm%7BkN%7D $$ |
---|
|
|
Required | Available | Check | Result |
---|
31.564 kN | 91.688 kN | 0.344 | √ |
...