Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

In this check, the operation is performed on half of the symmetry axis and is calculated to form a force pair with the required force.

Ab

Image Removed

Mathinline
body--uriencoded--$$ \normalsize A_b = \dfrac%7B \pi d%5e2%7D %7B4%7D = \dfrac%7B \pi 16%5e2%7D %7B4%7D = 201.062\; \mathrm%7Bmm%5e2%7D $$

 

Fnv

Image Removed

 

Rn

Image Removed

Mathinline
body--uriencoded--$$ \normalsize F_%7Bnv%7D=0.450F_%7Bub%7D=0.450 \times 800 = 360\; \mathrm%7BN/mm%7D $$

 

Rn

Mathinline
body--uriencoded--$$ \normalsize R_n = F_%7Bn%7D \times A_b = R_%7Bnv%7D = n ( m F_%7Bnv%7D A_b) $$

Mathinline
body--uriencoded--$$ \normalsize R_n = 4 \times (1 \times 360 \times 201.062 \times 10%5e%7B-3%7D )%7D = 289.53 \; \; \mathrm%7BkN%7D $$

AISC 360-16 J3-1

R n / Ω

Image Removed

Mathinline
body--uriencoded--$$ \normalsize R_n/ \Omega = 289.53 / 2 = 144.765 \; \; \mathrm%7BkN%7D $$

 

Required

Available

Check

Result

31.564 kN

144.765 kN

0.218

...

Bearing strength limit states of the connection part that are “shear tear out” and “ovalization of bolt hole” for both end and inner bolts are checked according to AISC 360-16.

dh

16+2=18 mm

 

Rn

Image Removed

Mathinline
body--uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2L_c \times t \times F_u \\2.4d \times t \times F_u \end%7Bmatrix%7D\right] \end%7Baligned%7D

AISC 360-16 J3-6a

Lc,spacing

Image Removed

Mathinline
body--uriencoded--$$ \normalsize L_%7Bc,spacing%7D = s - d_h = 60 - 18 =42\; \mathrm%7Bmm%7D $$

 

Rn-spacing

Image Removed

Mathinline
body--uriencoded--\begin%7Baligned%7D\normalsize R_%7Bn%7D=\mathrm%7Bmin%7D\left[\begin%7Bmatrix%7D 1.2 ( 42) ( 7.1 )(362.846 \times 10%5e%7B-3%7D) \\ 2.4 ( 16 ) ( 7.1 )(362.846 \times 10%5e%7B-3%7D) \end%7Bmatrix%7D\right]\end%7Baligned%7D = 98.926 \; \mathrm%7BkN%7D

 

Rn / Ω

Image Removed

Mathinline
body--uriencoded--$$ \normalsize R_n/ \Omega = 395.704 / 2 = 197.852 \; \; \mathrm%7BkN%7D $$

 

Required

Available

Check

Result

31.564 kN

197,853 kN

0.160

...

Bearing strength limit states of the connection part that are “shear tear out” and “ovalization of bolt hole” for both end and inner bolts are checked according to AISC 360-16.

dh

16+2=18 mm

 

Lc,edge

Image Removed

Mathinline
body--uriencoded--$$ \normalsize L_%7Bc,edge%7D = L_e - 0.5d_h = 45 -0.5 \times 18 = 36\; \mathrm%7Bmm%7D $$

 

Rn

Image Removed

Mathinline
body--uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2L_c \times t \times F_u \\2.4d \times t \times F_u \end%7Bmatrix%7D\right] \end%7Baligned%7D

AISC 360-16 J3-6a

Rn-edge

Image Removed

Mathinline
body--uriencoded--\begin%7Baligned%7D\normalsize R_%7Bn%7D=\mathrm%7Bmin%7D\left[\begin%7Bmatrix%7D 1.2 ( 36 ) ( 12 )(362.846 \times 10%5e%7B-3%7D) \\ 2.4 ( 16 ) (12 )(362.846 \times 10%5e%7B-3%7D) \end%7Bmatrix%7D\right]\end%7Baligned%7D = 167.199\; \mathrm%7BkN%7D

 

Lc,spacing

Image Removed

Mathinline
body--uriencoded--$$ \normalsize L_%7Bc,spacing%7D = s - d_h = 60 - 18 =42 $$

 

Rn-spacing

Image Removed

Mathinline
body--uriencoded--\begin%7Baligned%7D\normalsize R_%7Bn%7D=\mathrm%7Bmin%7D\left[\begin%7Bmatrix%7D 1.2 ( 42 ) ( 12 )(362.846 \times 10%5e%7B-3%7D) \\ 2.4 ( 16 ) (12 )(362.846 \times 10%5e%7B-3%7D) \end%7Bmatrix%7D\right]\end%7Baligned%7D = 167.199 \; \mathrm%7BkN%7D

 

Rn

Image Removed

Mathinline
body--uriencoded--\normalsize R_%7Bn%7D = n_e \times R_%7Bn,edge%7D + n_s \times R_%7Bn,spacing%7D

Mathinline
body--uriencoded--$$ \normalsize R_%7Bn%7D = 4 \times 167.199 = 668.797 \; \mathrm%7BkN%7D $$

 

Rn / Ω

Image Removed

Mathinline
body--uriencoded--$$ \normalsize R_n/ \Omega = 668.797 / 2 = 334.399 \; \; \mathrm%7BkN%7D $$

 

Required

Available

Check

Result

31.564 kN

334,399 kN

0.094

Beam Shear Yield

In the case of the block shear limit state, the gross area yielding of the tensile plane The shear strength of connecting elements in shear is the minimum value obtained according to the limit states of shear yielding and shear rupture. Shear yielding is checked according to AISC 360-16.

Ag

Image Removed

Mathinline
body--uriencoded--$$ \normalsize A_%7Bg%7D = L_pt_p = ( 240 - 30.7) \times 6.2 = 1297.66 \; \; \mathrm%7Bmm%5e2%7D $$

 

Fy

235.359 N/mm2

 

Rn

Image Removed

Mathinline
body--uriencoded--\normalsize R_n = 0.6F_%7By%7D A_g

Mathinline
body--uriencoded--$$ \normalsize R_n = 0.6 \times 235.359 \times 10%5e%7B-3%7D \times 1297.66 = 183.25 \; \; \mathrm%7BkN%7D $$

AISC 360-16 J4-3

Rn / Ω

Image Removed

Mathinline
body--uriencoded--$$ \normalsize R_n/ \Omega = 183.25 / 1.5 = 122.166 \; \; \mathrm%7BkN%7D $$

 

Required

Available

Check

Result

31.564 kN

122.166 kN

0.258

Plate Shear Yield

The gross area yielding of the tensile plane shear strength of connecting elements in shear is the minimum value obtained according to the limit states of shear yielding and shear rupture. Shear yielding is checked according to AISC 360-16.

Ag

Image Removed

Mathinline
body--uriencoded--$$ \normalsize A_%7Bg%7D = L_pt_p = 2 \times 150 \times 12 = 3600 \; \; \mathrm%7Bmm%5e2%7D $$

 

Fy

235.359 N/mm2

 

Rn

Mathinline
body--uriencoded--$$ \normalsize R_n

Image Removed

= 0.6F_%7By%7D A_g $$

Mathinline
body--uriencoded--$$ \normalsize R_n = 0.6 \times 235.359 \times 10%5e%7B-3%7D \times 3600 = 508.16 \; \; \mathrm%7BkN%7D $$

AISC 360-16 J4-3

Rn / Ω

Image Removed

Mathinline
body--uriencoded--$$ \normalsize R_n/ \Omega = 508.16 / 1.5 = 338.77 \; \; \mathrm%7BkN%7D $$

 

Required

Available

Check

Result

31.564 kN

338.77 kN

0.093

Plate Shear Rupture

The net area rupture of the tensile plane of the connection part shear strength of connecting elements in shear is the minimum value obtained according to the limit states of shear yielding and shear rupture. Shear rupture is checked according to AISC 360-16.

Anv

Image Removed

Mathinline
body--uriencoded--$$ \normalsize A_%7Bnv%7D = t_p(d_b-n_bd_e) = 2 \times 12 \times (150 - 2 \times 20) = 2640 \; \; \mathrm%7Bmm%5e2%7D $$

 

Fu

362.846 N/mm2

 

Rn

Image Removed

Mathinline
body--uriencoded--$$ \normalsize R_n = 0.6F_%7Bu%7D A_%7Bnv%7D $$

Mathinline
body--uriencoded--$$ \normalsize R_n = 0.6 \times 362.846 \times 10%5e%7B-3%7D \times 2640 = 574.75 \; \; \mathrm%7BkN%7D $$

AISC 360-16 J4-4

Rn / Ω

Image Removed

Mathinline
body--uriencoded--$$ \normalsize R_n/ \Omega = 574.75 / 2 = 287.374 \; \; \mathrm%7BkN%7D $$

 

Required

Available

Check

Result

31.564 kN

287,374 kN

0.110

...

The block shear limit state is checked according to AISC 360-16. All block shear modes combined with tensile failure on one plane and shear failure on a perpendicular plane are checked according to AISC 360-16.

Ag

Image Removed

Mathinline
body--uriencoded--\normalsize A_%7Bg%7D = (60 + 45) \times 12 \times 2 = 2520 \; \; \mathrm%7Bmm%5e2%7D

 

Anv

Image Removed

Mathinline
body--uriencoded--\normalsize A_%7Bnv%7D = ((60 + 45)-1.5 \times 20) \times 12 \times 2 = 1800 \; \; \mathrm%7Bmm%5e2%7D

 

Ant

Image Removed

Mathinline
body--uriencoded--\normalsize A_%7Bnt%7D = 2 \times 12 \times (40-0.5 \times 20) = 720 \; \; \mathrm%7Bmm%5e2%7D

 

Fy

235.359 N/mm2

 

Fu

362.846 N/mm2

 

Ubs

1.0

 

 

Image Removed

Mathinline
body--uriencoded--$$ \normalsize U_%7Bbs%7DF_%7Bu%7DA_%7Bnt%7D=1 \times 362.846 \times 10%5e%7B-3%7D \times 720 = 261. 25 $$
Mathinline
body--uriencoded--$$ \normalsize 0.6 F_%7Bu%7D A_%7Bnv%7D = 0.6 \times 362.846 \times 10%5e%7B-3%7D \times 1800 = 391.874 $$
Mathinline
body--uriencoded--$$ \normalsize 0.6 F_%7By%7D A_%7Bg%7D = 0.6 \times 235.359 \times 10%5e%7B-3%7D \times 2520 = 355.863 $$

 

Rn

Image Removed

Mathinline
body--uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 0.6F_uA_%7Bnv%7D \\0.6F_yA_%7Bg%7D \end%7Bmatrix%7D\right] \end%7Baligned%7D + U_%7Bbs%7DF_uA_%7Bnt%7D

Mathinline
body--uriencoded--$$ \normalsize R_%7Bn%7D =355.863 + 261.25 = 617.113 \; \mathrm%7BkN%7D $$

AISC 360-16 J4-5

Rn / Ω

Image Removed

Mathinline
body--uriencoded--$$ \normalsize R_n/ \Omega = 617.113 / 2 = 308.556 \; \; \mathrm%7BkN%7D $$

 

Required

Available

Check

Result

31.564 kN

308.556 kN

0.102

Welding Strength

Fe

480000 kN480 N/mmm2

w

7.07 mm

Fu

362.846  N/mm2

t

6.2 mm

l

135.856 mm

Rnw

Image Removed

RnBM

Image Removed

Rn

Image Removed

Mathinline
body--uriencoded--$$ \normalsize R_%7Bnw%7D = 0.6 \times F_e \times 2 \times 0.707 \times w \times l $$
Mathinline
body--uriencoded--$$ \normalsize R_%7Bnw%7D = 0.6 \times 480 \times 2 \times 0.707 \times 7.072 \times 135.856 \times 10%5e%7B-3%7D = 391.258 \; \mathrm%7BkN%7D $$

RnBM

Mathinline
body--uriencoded--$$ \normalsize R_%7BnBM%7D = 0.6 F_u t l = 0.6 \times 362.846 \times 6.2 \times 135.856 \times 10%5e%7B-3%7D = 183.376\; \mathrm%7BkN%7D $$

Rn

Mathinline
body--uriencoded--$$ \normalsize R_n = min (R_%7Bnw%7D,R_%7BnBM%7D) = 183.376\; \mathrm%7BkN%7D $$

Rn / Ω

Image Removed

Mathinline
body--uriencoded--$$ \normalsize R_n/ \Omega = 183.376 / 2 = 91.688 \; \; \mathrm%7BkN%7D $$

Required

Available

Check

Result

31.564 kN

91.688 kN

0.344

...