...
Ab | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_b = \dfrac%7B \pi d%5e2%7D %7B4%7D = \dfrac%7B \pi 16%5e2%7D %7B4%7D = 201.062\; \mathrm%7Bmm%5e2%7D $$ |
---|
|
| |
Fnv | Mathinline |
---|
body | --uriencoded--$$ \normalsize F_%7Bnv%7D=0.450F_%7Bub%7D=0.450 \times 800 = 360\; \mathrm%7BN/mm%7D $$ |
---|
|
| |
Rn | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = F_%7Bn%7D \times A_b = R_%7Bnv%7D = n ( m F_%7Bnv%7D A_b) $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = 4 \times (1 \times 360 \times 201.062 \times 10%5e%7B-3%7D )%7D = 289.53 \; \; \mathrm%7BkN%7D $$ |
---|
|
| AISC 360-16 J3-1 |
R n / Ω | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n/ \Omega = 289.53 / 2 = 144.765 \; \; \mathrm%7BkN%7D $$ |
---|
|
| |
...
dh | 16+2=18 mm | |
Rn | Mathinline |
---|
body | --uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2L_c \times t \times F_u \\2.4d \times t \times F_u \end%7Bmatrix%7D\right] \end%7Baligned%7D |
---|
|
| AISC 360-16 J3-6a |
Lc,spacing | Mathinline |
---|
body | --uriencoded--$$ \normalsize L_%7Bc,spacing%7D = s - d_h = 60 - 18 =42\; \mathrm%7Bmm%7D $$ |
---|
|
| |
Rn-spacing | Mathinline |
---|
body | --uriencoded--\begin%7Baligned%7D\normalsize R_%7Bn%7D=\mathrm%7Bmin%7D\left[\begin%7Bmatrix%7D 1.2 ( 42) ( 7.1 )(362.846 \times 10%5e%7B-3%7D) \\ 2.4 ( 16 ) ( 7.1 )(362.846 \times 10%5e%7B-3%7D) \end%7Bmatrix%7D\right]\end%7Baligned%7D = 98.926 \; \mathrm%7BkN%7D |
---|
|
| |
Rn / Ω | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n/ \Omega = 395.704 / 2 = 197.852 \; \; \mathrm%7BkN%7D $$ |
---|
|
| |
...
dh | 16+2=18 mm | |
Lc,edge | Mathinline |
---|
body | --uriencoded--$$ \normalsize L_%7Bc,edge%7D = L_e - 0.5d_h = 45 -0.5 \times 18 = 36\; \mathrm%7Bmm%7D $$ |
---|
|
| |
Rn | Mathinline |
---|
body | --uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2L_c \times t \times F_u \\2.4d \times t \times F_u \end%7Bmatrix%7D\right] \end%7Baligned%7D |
---|
|
| AISC 360-16 J3-6a |
Rn-edge | Mathinline |
---|
body | --uriencoded--\begin%7Baligned%7D\normalsize R_%7Bn%7D=\mathrm%7Bmin%7D\left[\begin%7Bmatrix%7D 1.2 ( 36 ) ( 12 )(362.846 \times 10%5e%7B-3%7D) \\ 2.4 ( 16 ) (12 )(362.846 \times 10%5e%7B-3%7D) \end%7Bmatrix%7D\right]\end%7Baligned%7D = 167.199\; \mathrm%7BkN%7D |
---|
|
| |
Lc,spacing | Mathinline |
---|
body | --uriencoded--$$ \normalsize L_%7Bc,spacing%7D = s - d_h = 60 - 18 =42 $$ |
---|
|
| |
Rn-spacing | Mathinline |
---|
body | --uriencoded--\begin%7Baligned%7D\normalsize R_%7Bn%7D=\mathrm%7Bmin%7D\left[\begin%7Bmatrix%7D 1.2 ( 42 ) ( 12 )(362.846 \times 10%5e%7B-3%7D) \\ 2.4 ( 16 ) (12 )(362.846 \times 10%5e%7B-3%7D) \end%7Bmatrix%7D\right]\end%7Baligned%7D = 167.199 \; \mathrm%7BkN%7D |
---|
|
| |
Rn Image Removed | Mathinline |
---|
body | --uriencoded--\normalsize R_%7Bn%7D = n_e \times R_%7Bn,edge%7D + n_s \times R_%7Bn,spacing%7D |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize R_%7Bn%7D = 4 \times 167.199 = 668.797 \; \mathrm%7BkN%7D $$ |
---|
|
| |
Rn / Ω | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n/ \Omega = 668.797 / 2 = 334.399 \; \; \mathrm%7BkN%7D $$ |
---|
|
| |
Required | Available | Check | Result |
---|
31.564 kN | 334,399 kN | 0.094 | √ |
Beam Shear Yield
In the case of the block shear limit state, the gross area yielding of the tensile plane The shear strength of connecting elements in shear is the minimum value obtained according to the limit states of shear yielding and shear rupture. Shear yielding is checked according to AISC 360-16.
...
Required | Available | Check | Result |
---|
31.564 kN | 122.166 kN | 0.258 | √ |
Plate Shear Yield
The gross area yielding of the tensile plane shear strength of connecting elements in shear is the minimum value obtained according to the limit states of shear yielding and shear rupture. Shear yielding is checked according to AISC 360-16.
...
Required | Available | Check | Result |
---|
31.564 kN | 338.77 kN | 0.093 | √ |
Plate Shear Rupture
The net area rupture of the tensile plane of the connection part shear strength of connecting elements in shear is the minimum value obtained according to the limit states of shear yielding and shear rupture. Shear rupture is checked according to AISC 360-16.
...
Ag | Mathinline |
---|
body | --uriencoded--\normalsize A_%7Bg%7D = (60 + 45) \times 12 \times 2 = 2520 \; \; \mathrm%7Bmm%5e2%7D |
---|
|
| |
Anv | Mathinline |
---|
body | --uriencoded--\normalsize A_%7Bnv%7D = ((60 + 45)-1.5 \times 20) \times 12 \times 2 = 1800 \; \; \mathrm%7Bmm%5e2%7D |
---|
|
| |
Ant | Mathinline |
---|
body | --uriencoded--\normalsize A_%7Bnt%7D = 2 \times 12 \times (40-0.5 \times 20) = 720 \; \; \mathrm%7Bmm%5e2%7D |
---|
|
| |
Fy | 235.359 N/mm2 | |
Fu | 362.846 N/mm2 | |
Ubs | 1.0 | |
| Mathinline |
---|
body | --uriencoded--$$ \normalsize U_%7Bbs%7DF_%7Bu%7DA_%7Bnt%7D=1 \times 362.846 \times 10%5e%7B-3%7D \times 720 = 261. 25 $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize 0.6 F_%7Bu%7D A_%7Bnv%7D = 0.6 \times 362.846 \times 10%5e%7B-3%7D \times 1800 = 391.874 $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize 0.6 F_%7By%7D A_%7Bg%7D = 0.6 \times 235.359 \times 10%5e%7B-3%7D \times 2520 = 355.863 $$ |
---|
|
| |
Rn | Mathinline |
---|
body | --uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 0.6F_uA_%7Bnv%7D \\0.6F_yA_%7Bg%7D \end%7Bmatrix%7D\right] \end%7Baligned%7D + U_%7Bbs%7DF_uA_%7Bnt%7D |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize R_%7Bn%7D =355.863 + 261.25 = 617.113 \; \mathrm%7BkN%7D $$ |
---|
|
| AISC 360-16 J4-5 |
Rn / Ω | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n/ \Omega = 617.113 / 2 = 308.556 \; \; \mathrm%7BkN%7D $$ |
---|
|
| |
Required | Available | Check | Result |
---|
31.564 kN | 308.556 kN | 0.102 | √ |
Welding Strength
Fe | 480000 kN480 N/mmm2 |
w | 7.07 mm |
Fu | 362.846 N/mm2 |
t | 6.2 mm |
l | 135.856 mm |
Rnw | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_%7Bnw%7D = 0.6 \times F_e \times 2 \times 0.707 \times w \times l $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize R_%7Bnw%7D = 0.6 \times 480 \times 2 \times 0.707 \times 7.072 \times 135.856 \times 10%5e%7B-3%7D = 391.258 \; \mathrm%7BkN%7D $$ |
---|
|
|
RnBM | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_%7BnBM%7D = 0.6 F_u t l = 0.6 \times 362.846 \times 6.2 \times 135.856 \times 10%5e%7B-3%7D = 183.376\; \mathrm%7BkN%7D $$ |
---|
|
|
Rn | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = min (R_%7Bnw%7D,R_%7BnBM%7D) = 183.376\; \mathrm%7BkN%7D $$ |
---|
|
|
Rn / Ω | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n/ \Omega = 183.376 / 2 = 91.688 \; \; \mathrm%7BkN%7D $$ |
---|
|
|
...