Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

tw

7.1 mm

 

lb

25.7 mm

 

to

10.7 + 15 = 25.7 mm (Beam flange + Beam flange radius)

 

Fy

235.359 N/mm2

 

Rn

Mathinline
body$$ \normalsize R_n = F_yt_w(2.5k + l_b) $$
Mathinline
body--uriencoded--$$ \normalsize R_n = 235.359 \times 10%5e%7B-3%7D \times 7.1 \times ( 2.5 \times 25.7 + 25.7 ) = 150.31 \; \mathrm%7BkN%7D $$

AISC 360-16 Eq. J10-3

Rn / Ω

Mathinline
body--uriencoded--$$ \normalsize R_n/ \Omega = 150.31 / 1.5 =100.207 \; \; \mathrm%7BkN%7D $$

 

...

tw

7.1 mm

 

tf

10.7 mm

 

lb

25.7 mm

 

d

300 mm

 

E

205939650 kN/m2

 

Fy

235.359 N/mm2

 

Rn

Mathinline
body--uriencoded--$$ \normalsize R_n = 0.4t%5e2_w \left [1+ 3 \left ( \dfrac%7Bl_b%7D %7Bd%7D \right ) \left ( \dfrac%7Bt_w%7D %7Bt_f%7D \right )%5e%7B1.5%7D \right] \sqrt%7B \dfrac%7BEF_%7Byw%7Dt_f%7D %7Bt_w%7D %7D $$

AISC 360-16 Eq. J10-5a

 

Mathinline
body--uriencoded--$$ \small R_n = 0.4 \times 7.1%5e2 \left [1+ 3 \left ( \dfrac%7B25.7%7D %7B300%7D \right ) \left ( \dfrac%7B7.1%7D %7B10.7%7D \right )%5e%7B1.5%7D \right] \sqrt%7B \dfrac%7B205939650 \times 235.359 \times 10%5e%7B-3%7D \times 10.7 %7D %7B7.1%7D %7D $$
Mathinline
body--uriencoded--$$ \small R_n = 196.275 \; \mathrm%7BkN%7D $$

 

Rn / Ω

Mathinline
body--uriencoded--$$ \normalsize R_n/ \Omega = 196.275 / 2 =98.138 \; \; \mathrm%7BkN%7D $$

 

Required

Available

Check

Result

73.288 kN

98.138 kN

0.747

Angle Shear Yield

The gross area yielding of the connection part shear strength of connecting elements in shear is the minimum value obtained according to the limit states of shear yielding and shear rupture. Shear yielding is checked according to AISC 360-16.

...

Fe

480000 kN/m2

w

11.315 mm

Fu

362.846  N/mm2

l

110 mm

e

60mm

Rn

Mathinline
body--uriencoded--$$ \normalsize R_n = \dfrac%7B 2 l%5e2 0.6 Fe 0.707 w%7D %7B\sqrt%7Bl%5e2 + 36 e%5e2%7D %7D $$

Mathinline
body--uriencoded--$$ \normalsize R_n = \dfrac%7B 2 \times 110%5e2 \times 0.6 \times 480 \times 10%5e%7B-3%7D \times 0.707 \times 11.315%7D %7B\sqrt%7B110%5e2 + 36 \times 60%5e2%7D %7D = 148.114\; \mathrm%7BkN%7D $$

Rn / Ω

Mathinline
body--uriencoded--$$ \normalsize R_n/ \Omega = 148.114 / 2 = 74.057 \; \; \mathrm%7BkN%7D $$

...