How does ideCAD design single angle connection according to AISC 360-16?
...
smin ≥ 3d | AISC 360-16 J3.3 | | |
s | 79.5 mm | | |
d | 20 mm | s =79.5 mm > smin = 3*20=60 mm | √ |
Horizontal Edge Distance
The distance from the center of the hole to the edge of the connected part in the horizontal direction is checked per AISC 360-16.
Leh ≥ Le-min | AISC 360-16 J3.4 | | |
Leh | 50.75 mm | Leh ≥ 2d = 2 * 20 = 40 mm conformity check for application | √ |
Le-min | 26 mm | Minimum distance check according to Table J3.4 | √ |
Vertical Edge Distance
The distance from the center of the hole to the edge of the connected part in the vertical direction is checked per AISC 360-16.
Lev ≥ Le-min | AISC 360-16 J3.4 | | |
Lev | 40 mm | Leh ≥ 2d = 2 * 20 = 40 mm conformity check for application | √ |
Le- min | 26 mm | Minimum distance check according to Table J3.4 | √ |
Weld Size
The minimum size of fillet welds is checked according to AISC 360-16 Table J2.4
a ≥ amin | AISC 360-16 Table J2.4 | | |
a | 6 mm | | √ |
amin | 3.5 mm | Table J2.4 | √ |
Erection Stability
L≥ hb / 2 | | | |
L | 239 mm | | |
hb | 248.6 mm | L=239 > 248.6/2=124.3 mm | √ |
Strength Checks
Angle Shear Yield
In the case of the block shear limit state, the gross area yielding of the tensile plane The shear strength of connecting elements in shear is the minimum value obtained according to the limit states of shear yielding and shear rupture. Shear yielding is checked according to AISC 360-16.
Ag Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_g = L_%7Bp%7D \times t_p =239 \times 12 = 2868 \; \; \mathrm%7Bmm%5e2%7D $$ |
---|
|
| |
Fy | 235.359 N/mm2 | |
Rn | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n |
---|
| Image Removed Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = 0.6 \times 235.359 \times 10%5e%7B-3%7D \times 2868=405\; \mathrm%7BkN%7D $$ |
---|
|
| AISC 360-16 J4-3 |
Rn / Ω Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n/ \Omega = 405/1.5 =270\; \mathrm%7BkN%7D $$ |
---|
|
| |
Required | Available | Check | Result |
---|
68,159 kN | 270 kN | 0.252 | √ |
Beam Shear Rupture
In the case of the block shear limit state, the net area rupture of the tensile plane of the connection part The shear strength of connecting elements in shear is the minimum value obtained according to the limit states of shear yielding and shear rupture. Shear rupture is checked according to AISC 360-16.
Anv | | Image Removed | body | --uriencoded--$$ \normalsize A_%7Bnv%7D = t_p(d_b-n_bd_e) = 7.1 \times (300-3 \times 24) = 1618.8 \; \; \mathrm%7Bmm%5e2%7D $$ |
---|
|
| |
Fu | 362.846 N/mm2 | |
Rn Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = 0.6F_%7Bu%7DA_%7Bnv%7D $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = 0.6 \times 362.846 \times 10%5e%7B-3%7D \times 1618.8=352.425 \; \mathrm%7BkN%7D $$ |
---|
|
| AISC 360-16 J4-4 |
Rn / Ω Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n/ \Omega = 352.425 /2 =176.213 \; \; \mathrm%7BkN%7D $$ |
---|
|
| |
Required | Available | Check | Result |
---|
68,159 kN | 176.213 kN | 0.387 | √ |
Angle Shear Rupture at Beam
In the case of the block shear limit state, the net area rupture of the tensile plane of the connection part The shear strength of connecting elements in shear is the minimum value obtained according to the limit states of shear yielding and shear rupture. Shear rupture is checked according to AISC 360-16.
Anv Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_%7Bnv%7D = t_p(d_b-n_bd_e) = 12 \times (239-3 \times 24) = 2004 \; \; \mathrm%7Bmm%5e2%7D $$ |
---|
|
| |
Fu | 362.846 N/mm2 | |
Rn Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = 0.6F_%7Bu%7DA_%7Bnv%7D $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = 0.6 \times 362.846 \times 10%5e%7B-3%7D \times 2004=436.286 \; \mathrm%7BkN%7D $$ |
---|
|
| AISC 360-16 J4-4 |
Rn / Ω Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n/ \Omega = 436.286 /2 =218.143\; \; \mathrm%7BkN%7D $$ |
---|
|
| |
Required | Available | Check | Result |
---|
68.159 kN | 218.143 kN | 0.312 | √ |
...
The block shear limit state is checked according to AISC 360-16. All block shear modes combined with tensile failure on one plane and shear failure on a perpendicular plane are checked according to AISC 360-16.
Ag Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_%7Bg%7D = (2 \times 79.5 +40) \times 12 = 2388 \; \; \mathrm%7Bmm%5e2%7D $$ |
---|
|
| |
Anv Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_%7Bnv%7D = ((2 \times 79.5+40)-2.5 \times 24) \times 12 = 1668 \; \; \mathrm%7Bmm%5e2%7D $$ |
---|
|
| |
Ant Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_%7Bnt%7D = 12 \times(50.75-0.5 \times 24) = 465 \; \; \mathrm%7Bmm%5e2%7D $$ |
---|
|
| |
Fy | 235.359 N/mm2 | |
Fu | 362.846 N/mm2 | |
Ubs | 1.0 | |
| Image Removed | | Rn | Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize U_%7Bbs%7D F_u A_%7Bnt%7D = 1 \times 362.846 \times 10%5e%7B-3%7D \times 465 = 168.72\; \mathrm%7BkN%7D $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize 0.6 F_%7Bu%7D A_%7Bnv%7D = 0.6 \times 362.846 \times 10%5e%7B-3%7D \times 1668 = 363.136\; \mathrm%7BkN%7D $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize 0.6 F_%7By%7D A_%7Bg%7D = 0.6 \times 235.359 \times 10%5e%7B-3%7D \times 2388 = 337.222\; \mathrm%7BkN%7D $$ |
---|
|
| |
Rn | Mathinline |
---|
body | --uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 0.6F_uA_%7Bnv%7D \\0.6F_yA_%7Bg%7D \end%7Bmatrix%7D\right] \end%7Baligned%7D + U_%7Bbs%7DF_uA_%7Bnt%7D |
---|
|
Mathinline |
---|
body | --uriencoded--\normalsize R_%7Bn%7D =337.222+168.72=505.942\; \mathrm%7BkN%7D |
---|
|
| AISC 360-16 J4-5 |
Rn / Ω Image Removed | Mathinline |
---|
body | --uriencoded--\normalsize R_n/ \Omega = 505.942/2 =252.971 \; \; \mathrm%7BkN%7D |
---|
|
| |
Required | Available | Check | Result |
---|
68.159 kN | 252,971 kN | 0.269 | √ |
...
Bearing strength limit states of the connection plate that are “shear tear out” and “ovalization of bolt hole” for both end and inner bolts are checked according to AISC 360-16.
dh | 20+2=22 mm | |
Lc,edge Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize L_%7Bc,edge%7D = L_e - 0.5d_h $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize L_%7Bc,edge%7D = \left [ \left ( \dfrac%7B378.6-239%7D %7B2%7D \right ) +40-0.5 \times 22 \right ] = 98.8\; \mathrm%7Bmm%7D $$ |
---|
|
| |
Rn Image Removed | Mathinline |
---|
body | --uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2L_c t F_u \\2.4d t F_u \end%7Bmatrix%7D\right] \end%7Baligned%7D |
---|
|
| AISC 360-16 J3-6a |
Rn-edge Image Removed | Mathinline |
---|
body | --uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2(98.9)(7.1)(362.846 \times 10%5e%7B-3%7D) \\2.4(20)(7.1)(362.846 \times 10%5e%7B-3%7D) \end%7Bmatrix%7D\right] \end%7Baligned%7D =123.658\; \mathrm%7BkN%7D |
---|
|
| |
Lc,spacing Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize L_%7Bc,spacing%7D = s - d_h = 79.5 - 22 = 57.5\; \mathrm%7Bmm%7D $$ |
---|
|
| |
Rn-spacing | Image Removed | | Rn | Image Removed | Mathinline |
---|
body | --uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2(57.5)(7.1)(362.846 \times 10%5e%7B-3%7D) \\2.4(20)(7.1)(362.846 \times 10%5e%7B-3%7D) \end%7Bmatrix%7D\right] \end%7Baligned%7D =123.658\; \mathrm%7BkN%7D |
---|
|
| |
Rn | Mathinline |
---|
body | --uriencoded--\normalsize R_%7Bn%7D = n_eR_%7Bn,edge%7D + n_sR_%7Bn,spacing%7D |
---|
|
Mathinline |
---|
body | --uriencoded--\normalsize R_%7Bn%7D = 1 \times 123.658 + 2 \times 123.658 = 370.974 \; \mathrm%7BkN%7D |
---|
|
| |
Rn / Ω Image Removed | Mathinline |
---|
body | --uriencoded--\normalsize R_n/ \Omega = 370.974 /2 =185.487 \; \; \mathrm%7BkN%7D |
---|
|
| |
Required | Available | Check | Result |
---|
68.159 kN | 185.487 kN | 0.367 | √ |
Bolt Bearing on Angle at Beam
Bearing strength limit states of the connection plate that are “shear tear out” and “ovalization of bolt hole” for both end and inner bolts are checked according to AISC 360-16.
dh | 20+2=22 mm | |
Lc,edge Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize L_%7Bc,edge%7D = L_e - 0.5d_h $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize L_%7Bc,edge%7D = 40-0.5 \times 22 = 29 $$ |
---|
|
| |
Rn Image Removed | Mathinline |
---|
body | --uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2L_c t F_u \\2.4d t F_u \end%7Bmatrix%7D\right] \end%7Baligned%7D |
---|
|
| AISC 360-16 J3-6a |
Rn-edge Image Removed | Mathinline |
---|
body | --uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2(98.9)(7.1)(362.846 \times 10%5e%7B-3%7D) \\2.4(20)(7.1)(362.846 \times 10%5e%7B-3%7D) \end%7Bmatrix%7D\right] \end%7Baligned%7D =123.658\; \mathrm%7BkN%7D |
---|
|
| |
Lc,spacing Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize L_%7Bc,spacing%7D = s - d_h = 79.5 - 22 = 57.5\; \mathrm%7Bmm%7D $$ |
---|
|
| |
Rn-spacing Image Removed | Mathinline |
---|
body | --uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2(57.5)(12)(362.846 \times 10%5e%7B-3%7D) \\2.4(20)(12)(362.846 \times 10%5e%7B-3%7D) \end%7Bmatrix%7D\right] \end%7Baligned%7D =208.99\; \mathrm%7BkN%7D |
---|
|
| |
Rn Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_%7Bn%7D = n_eR_%7Bn,edge%7D + n_sR_%7Bn,spacing%7D $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize R_%7Bn%7D = 1 \times 151.525 + 2 \times 208.99 = 569.505 \; \mathrm%7BkN%7D $$ |
---|
|
| |
Rn / Ω Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n/ \Omega = 569.505 /2 =284.75 \; \; \mathrm%7BkN%7D $$ |
---|
|
| |
Required | Available | Check | Result |
---|
68.159 kN | 284.75 kN | 0.239 | √ |
...
In this check, the operation is performed on half of the symmetry axis and is calculated to form a force pair with the required force.
Ab Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_b = \dfrac%7B \pi d%5e2%7D %7B4%7D = \dfrac%7B \pi 20%5e2%7D %7B4%7D = 314.159 \; \mathrm%7Bmm%5e2%7D$$ |
---|
|
|
Fn Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize F_n = 0.450 F_%7Bub%7D = 0.450 \times 800 =360\; \mathrm%7BN/mm%5e2%7D $$ |
---|
| |
Rn | Image Removed Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = F_n A_b = 360 \times 314.159 \times 10%5e%7B-3%7D =113.097 \; \; \mathrm%7BkN%7D $$ |
---|
| |
Rn / Ω Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n/ \Omega = 113.097 /2 =56.549 \; \; \mathrm%7BkN%7D $$ |
---|
| |
Required | Available | Check | Result |
---|
37.382 kN | 56.549 kN | 0.661 | √ |
Weld Strength at Support
Fe | 480000 kN480 N/mmm2 |
w | The weld thickness taken from the combination menu is 0.707 * w value. 6 / 0.707 = 8.487 mm |
Fu | 362.846 N/mm2 |
t | 12 mm |
Rnw | Image Removed |
RnBM | Image Removed |
Rn | Image Removed Mathinline |
---|
body | --uriencoded--$$ \normalsize R_%7Bnw%7D = 0.6 F_e 0.707 w = 0.6 \times 480 \times 0.707 \times 8.487 =1728\; \mathrm%7BkN/m%7D $$ |
---|
|
|
RnBM | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_%7BnBM%7D = 0.6 F_u t = 0.6 \times 362.846 \times 12 =2612.49 \; \mathrm%7BkN/m%7D $$ |
---|
|
|
Rn | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = min (R_%7Bnw%7D,R_%7BnBM%7D) = 1728 \; \mathrm%7BkN/m%7D $$ |
---|
|
|
R n / Ω Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n/ \Omega = 1728 /2 =864 \; \; \mathrm%7BkN/m%7D $$ |
---|
|
|
Required | Available | Check | Result |
---|
248.654 kN/m | 864 kN/m | 0.288 | √ |
...