How does ideCAD design single angle connection according to AISC 360-16?
...
smin ≥ 3d | AISC 360-16 J3.3 | | |
s | 79.5 mm | | |
d | 20 mm | s =79.5 mm > smin = 3*20=60 mm | √ |
Horizontal Edge Distance
The distance from the center of the hole to the edge of the connected part in the horizontal direction is checked per AISC 360-16.
Leh ≥ Le-min | AISC 360-16 J3.4 | | |
Leh | 50.75 mm | Leh ≥ 2d = 2 * 20 = 40 mm conformity check for application | √ |
Le-min | 26 mm | Minimum distance check according to Table J3.4 | √ |
Vertical Edge Distance
The distance from the center of the hole to the edge of the connected part in the vertical direction is checked per AISC 360-16.
Lev ≥ Le-min | AISC 360-16 J3.4 | | |
Lev | 40 mm | Leh ≥ 2d = 2 * 20 = 40 mm conformity check for application | √ |
Le- min | 26 mm | Minimum distance check according to Table J3.4 | √ |
Weld Size
The minimum size of fillet welds is checked according to AISC 360-16 Table J2.4
a ≥ amin | AISC 360-16 Table J2.4 | | |
a | 6 mm | | √ |
amin | 3.5 mm | Table J2.4 | √ |
Erection Stability
L≥ hb / 2 | | | |
L | 239 mm | | |
hb | 248.6 mm | L=239 > 248.6/2=124.3 mm | √ |
Strength Checks
Angle Shear Yield
In the case of the block shear limit state, the gross area yielding of the tensile plane is checked according to The shear strength of connecting elements in shear is the minimum value obtained according to the limit states of shear yielding and shear rupture. Shear yielding is checked according to AISC 360-16.
Ag | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_g = L_%7Bp%7D \times t_p =239 \times 12 = 2868 \; \; \mathrm%7Bmm%5e2%7D $$ |
---|
|
| |
Fy | 235.359 N/mm2 | |
Rn | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = 0.6F_%7By%7DA_g $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = 0.6 \times 235.359 \times 10%5e%7B-3%7D \times 2868=405\; \mathrm%7BkN%7D $$ |
---|
|
| AISC 360-16 J4-3 |
Rn / Ω | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n/ \Omega = 405/1.5 =270\; \mathrm%7BkN%7D $$ |
---|
|
| |
Required | Available | Check | Result |
---|
68,159 kN | 270 kN | 0.252 | √ |
Beam Shear Rupture
In the case of the block shear limit state, the net area rupture of the tensile plane of the connection part The shear strength of connecting elements in shear is the minimum value obtained according to the limit states of shear yielding and shear rupture. Shear rupture is checked according to AISC 360-16.
...
Angle Shear Rupture at Beam
In the case of the block shear limit state, the net area rupture of the tensile plane of the connection part The shear strength of connecting elements in shear is the minimum value obtained according to the limit states of shear yielding and shear rupture. Shear rupture is checked according to AISC 360-16.
...
Ag | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_%7Bg%7D = (2 \times 79.5 +40) \times 12 = 2388 \; \; \mathrm%7Bmm%5e2%7D $$ |
---|
|
| |
Anv | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_%7Bnv%7D = ((2 \times 79.5+40)-2.5 \times 24) \times 12 = 1668 \; \; \mathrm%7Bmm%5e2%7D $$ |
---|
|
| |
Ant | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_%7Bnt%7D = 12 \times(50.75-0.5 \times 24) = 465 \; \; \mathrm%7Bmm%5e2%7D $$ |
---|
|
| |
Fy | 235.359 N/mm2 | |
Fu | 362.846 N/mm2 | |
Ubs | 1.0 | |
| Mathinline |
---|
body | --uriencoded--$$ \normalsize U_%7Bbs%7D F_u A_%7Bnt%7D = 1 \times 362.846 \times 10%5e%7B-3%7D \times 465 = 168.72\; \mathrm%7BkN%7D $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize 0.6 F_%7Bu%7D A_%7Bnv%7D = 0.6 \times 362.846 \times 10%5e%7B-3%7D \times 1668 = 363.136\; \mathrm%7BkN%7D $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize 0.6 F_%7By%7D A_%7Bg%7D = 0.6 \times 235.359 \times 10%5e%7B-3%7D \times 2388 = 337.222\; \mathrm%7BkN%7D $$ |
---|
|
| |
Rn Image Removed | Mathinline |
---|
body | --uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 0.6F_uA_%7Bnv%7D \\0.6F_yA_%7Bg%7D \end%7Bmatrix%7D\right] \end%7Baligned%7D + U_%7Bbs%7DF_uA_%7Bnt%7D |
---|
|
Mathinline |
---|
body | --uriencoded--\normalsize R_%7Bn%7D =337.222+168.72=505.942\; \mathrm%7BkN%7D |
---|
|
| AISC 360-16 J4-5 |
Rn / Ω | Mathinline |
---|
body | --uriencoded--\normalsize R_n/ \Omega = 505.942/2 =252.971 \; \; \mathrm%7BkN%7D |
---|
|
| |
...
dh | 20+2=22 mm | |
Lc,edge | Mathinline |
---|
body | --uriencoded--$$ \normalsize L_%7Bc,edge%7D = L_e - 0.5d_h $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize L_%7Bc,edge%7D = \left [ \left ( \dfrac%7B378.6-239%7D %7B2%7D \right ) +40-0.5 \times 22 \right ] = 98.8\; \mathrm%7Bmm%7D $$ |
---|
|
| |
Rn | Mathinline |
---|
body | --uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2L_c \times t \times F_u \\2.4d \times t \times F_u \end%7Bmatrix%7D\right] \end%7Baligned%7D |
---|
|
| AISC 360-16 J3-6a |
Rn-edge | Mathinline |
---|
body | --uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2(98.9)(7.1)(362.846 \times 10%5e%7B-3%7D) \\2.4(20)(7.1)(362.846 \times 10%5e%7B-3%7D) \end%7Bmatrix%7D\right] \end%7Baligned%7D =123.658\; \mathrm%7BkN%7D |
---|
|
| |
Lc,spacing | Mathinline |
---|
body | --uriencoded--$$ \normalsize L_%7Bc,spacing%7D = s - d_h = 79.5 - 22 = 57.5\; \mathrm%7Bmm%7D $$ |
---|
|
| |
Rn-spacing | Mathinline |
---|
body | --uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2(57.5)(7.1)(362.846 \times 10%5e%7B-3%7D) \\2.4(20)(7.1)(362.846 \times 10%5e%7B-3%7D) \end%7Bmatrix%7D\right] \end%7Baligned%7D =123.658\; \mathrm%7BkN%7D |
---|
|
| |
Rn | Mathinline |
---|
body | --uriencoded--\normalsize R_%7Bn%7D = n_eR_%7Bn,edge%7D + n_sR_%7Bn,spacing%7D |
---|
|
Mathinline |
---|
body | --uriencoded--\normalsize R_%7Bn%7D = 1 \times 123.658 + 2 \times 123.658 = 370.974 \; \mathrm%7BkN%7D |
---|
|
| |
Rn / Ω | Mathinline |
---|
body | --uriencoded--\normalsize R_n/ \Omega = 370.974 /2 =185.487 \; \; \mathrm%7BkN%7D |
---|
|
| |
Required | Available | Check | Result |
---|
68.159 kN | 185.487 kN | 0.367 | √ |
Bolt Bearing on Angle at Beam
...
dh | 20+2=22 mm | |
Lc,edge | Mathinline |
---|
body | --uriencoded--$$ \normalsize L_%7Bc,edge%7D = L_e - 0.5d_h $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize L_%7Bc,edge%7D = 40-0.5 \times 22 = 29 $$ |
---|
|
| |
Rn | Mathinline |
---|
body | --uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2L_c \times t \times F_u \\2.4d \times t \times F_u \end%7Bmatrix%7D\right] \end%7Baligned%7D |
---|
|
| AISC 360-16 J3-6a |
Rn-edge | Mathinline |
---|
body | --uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2(98.9)(7.1)(362.846 \times 10%5e%7B-3%7D) \\2.4(20)(7.1)(362.846 \times 10%5e%7B-3%7D) \end%7Bmatrix%7D\right] \end%7Baligned%7D =123.658\; \mathrm%7BkN%7D |
---|
|
| |
Lc,spacing | Mathinline |
---|
body | --uriencoded--$$ \normalsize L_%7Bc,spacing%7D = s - d_h = 79.5 - 22 = 57.5\; \mathrm%7Bmm%7D $$ |
---|
|
| |
Rn-spacing | Mathinline |
---|
body | --uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2(57.5)(12)(362.846 \times 10%5e%7B-3%7D) \\2.4(20)(12)(362.846 \times 10%5e%7B-3%7D) \end%7Bmatrix%7D\right] \end%7Baligned%7D =208.99\; \mathrm%7BkN%7D |
---|
|
| |
Rn | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_%7Bn%7D = n_eR_%7Bn,edge%7D + n_sR_%7Bn,spacing%7D $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize R_%7Bn%7D = 1 \times 151.525 + 2 \times 208.99 = 569.505 \; \mathrm%7BkN%7D $$ |
---|
|
| |
Rn / Ω | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n/ \Omega = 569.505 /2 =284.75 \; \; \mathrm%7BkN%7D $$ |
---|
|
| |
...
Ab | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_b = \dfrac%7B \pi d%5e2%7D %7B4%7D = \dfrac%7B \pi 20%5e2%7D %7B4%7D = 314.159 $$\; \mathrm%7Bmm%5e2%7D$$ |
---|
|
|
Fn | Mathinline |
---|
body | --uriencoded--$$ \normalsize F_n = 0.450 F_%7Bıb%7D %7Bub%7D = 0.450 \times 800 =360 800 =360\; \mathrm%7BN/mm%5e2%7D $$ |
---|
| |
Rn | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = F_n A_b = 360 \times 314.159 \times 10%5e%7B-3%7D =113.097 \; \; \mathrm%7BkN%7D $$ |
---|
| |
Rn / Ω | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n/ \Omega = 113.097 /2 =56.549 \; \; \mathrm%7BkN%7D $$ |
---|
| |
...
Weld Strength at Support
Fe | 480000 kN480 N/mmm2 |
w | The weld thickness taken from the combination menu is 0.707 * w value. 6 / 0.707 = 8.487 mm |
Fu | 362.846 N/mm2 |
t | 12 mm |
Rnw | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_%7Bnw%7D = 0.6 F_e 0.707 w = 0.6 \times 480 \times 0.707 \times 8.487 =1728\; \mathrm%7BkN/m%7D $$ |
---|
|
|
RnBM | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_%7BnBM%7D = 0.6 F_u t = 0.6 \times 362.846 \times 12 =2612.49 \; \mathrm%7BkN/m%7D $$ |
---|
|
|
Rn | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = min (R_%7Bnw%7D,R_%7BnBM%7D) = 1728 \; \mathrm%7BkN/m%7D $$ |
---|
|
|
R n / Ω Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n/ \Omega = 1728 /2 =864 \; \; \mathrm%7BkN/m%7D $$ |
---|
|
|
Required | Available | Check | Result |
---|
248.654 kN/m | 864 kN/m | 0.288 | √ |
...