Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Tip
  • The block shear limit state is checked automatically according to AISC 360-16.

...

Panel
panelIconIdatlassian-check_mark
panelIcon:check_mark:
bgColor#E3FCEF

Download ideCAD for Connection Design with AISC 360-16

Get Started FREE Software for Steel Connections

Symbols

Ab: Non-threaded bolt web characteristic cross-sectional area
Ag: Gross area
An: Net cross-section area
Ae: Effective net cross-sectional area
Avg: Gross area under shear stress
Anv: Net area under shear stress
Ant: Net area under tensile stress
d: Characteristic diameter of the stem of the bolt (the diameter of the non-threaded stem of the bolt)
dh: Bolt hole diameter
Fy: Structural steel characteristic yield strength
Fu: Structural steel characteristic tensile strength
s: Distance between bolt-holecenters
Lc: The clear distance between bolt holes
Le: The distance from the center of the bolt hole to the edge of the assembled element
Leh: The horizontal distance from the center of the bolt hole to the edge of the assembled element
Lev: The vertical distance from the center of the bolt hole to the edge of the assembled element
t: Plate thickness
Rn: Characteristic strength
Ubs: A coefficient considering the spread of tensile stresses

...

Connection Geometry

...

GEOMETRY CHECKS

Bolt Spacing at Flange

The distance between the centers of bolts is checked per AISC 360-16.

smin ≥ 3d       

AISC 360-16 J3.3

 

 

s

72 mm

 

 

d

24 mm

s =72 mm > smin = 3*24=72 mm

Horizontal Edge Distance at Flange

The distance from the center of the hole to the edge of the connected part in the horizontal direction is checked per AISC 360-16.

Leh ≥ Le-min     

AISC 360-16 J3.4

 

 

Leh

75 mm

Leh ≥ 2d = 2 * 24 = 48 mm conformity check for application

Le-min

30 mm

Minimum distance check according to Table J3.4

Vertical Edge Distance at Flange

The distance from the center of the hole to the edge of the connected part in the vertical direction is checked per AISC 360-16.

Lev ≥ Le-min     

AISC 360-16 J3.4

 

 

Lev

35 mm

 

 

Le- min

30 mm

Minimum distance check according to AISC 360-16 Table J3.4

Bolt Spacing at Web

The distance between the centers of bolts is checked per AISC 360-16.

smin ≥ 3d       

AISC 360-16 J3.3

 

 

s

113 mm

 

 

d

24 mm

s =113 mm > smin = 3*24=72 mm

Horizontal Edge Distance at Web

The distance from the center of the hole to the edge of the connected part in the horizontal direction is checked per AISC 360-16.

Leh ≥ L e-min     

AISC 360-16 J3.4

 

 

Leh

55 mm

Leh ≥ 2d = 2 * 24 = 48 mm conformity check for application

Le-min

30 mm

Minimum distance check according to Table J3.4

Vertical Edge Distance at Web

The distance from the center of the hole to the edge of the connected part in the vertical direction is checked per AISC 360-16.

Lev ≥ Le-min     

AISC 360-16 J3.3

 

 

Lev

49.5 mm

L eh ≥ 2d = 2 * 24 = 48 mm conformity check for application

Le-min

30 mm

Minimum distance check according to Table J3.4

STRENGTH CHECKS

Bolt Shear at Flange

The calculation is made using the Elastic method, one of the methods selected in the steel analysis settings tab. In this check, the operation is performed on half of the symmetry axis and is calculated to form a force pair with the required force.

Ab

Mathinline
body--uriencoded--$$ \normalsize A_%7Bb%7D = \dfrac %7B \pi d%5e2%7D%7B4%7D = \dfrac %7B \pi 24%5e2%7D%7B4%7D =452.389 $$\; \mathrm%7Bmm%5e2%7D$$

AISC 360-16 J3-1

Fn

Mathinline
body--uriencoded--$$ \normalsize F_n = 0.450F_%7Bub%7D = 0.450 \times 800 = 360 \; \mathrm%7BN/mm%5e2%7D $$

Rn

Mathinline
body--uriencoded--$$ \normalsize R_n = F_%7Bn%7DA_b = 6 \times 360 \times 452.389 \times 10%5e%7B-3%7D = 977.16 $$\; \mathrm%7BkN%7D$$

ΦRn

Mathinline
body--uriencoded--$$ \normalsize \varphi R_n = 0.75 \times 977.16 = 732.87 \; \mathrm%7BkN%7D $$

Required

Ready

Rate

Control

425.018 kN

732.87 kN

0.580

Bolt Bearing on Flange Plate

The bearing strength limit states of the connection plate, which are “shear tear out” and “ovalization of bolt hole” for both end and inner bolts, are checked according to AISC 360-16.

dh

24+3=27 mm

 

Lc,edge

Mathinline
body--uriencoded--$$ \normalsize L_%7Bc,edge%7D = L_e - 0.5d_h = 75 - 0.5 \times 27 = 61.5 $$\; \mathrm%7Bmm%7D$$

 

Rn

Mathinline
body--uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2L_c \times t \times F_u \\2.4d \times t \times F_u \end%7Bmatrix%7D\right] \end%7Baligned%7D

AISC 360-16 J3-6a

Rn-edge

Mathinline
body--uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2(61.5)(15)(360 \times 10%5e%7B-3%7D) \\2.4(24)(15)(360 \times 10%5e%7B-3%7D) \end%7Bmatrix%7D\right] \end%7Baligned%7D =311.04\; \mathrm%7BkN%7D

 

Lc,spacing

Mathinline
body--uriencoded--$$ \normalsize L_%7Bc,spacing%7D = 72 - 27 = 45 $$\; \mathrm%7Bmm%7D$$

 

Rn-spacing

Mathinline
body--uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2(45)(15)(360 \times 10%5e%7B-3%7D) \\2.4(24)(15)(360 \times 10%5e%7B-3%7D) \end%7Bmatrix%7D\right] \end%7Baligned%7D =291.6\; \mathrm%7BkN%7D

 

Rn

Mathinline
body--uriencoded--$$ \normalsize R_n = n_e R_%7Bn-edge%7D + n_s R_%7Bn-spacing%7D $$
Mathinline
body--uriencoded--$$ \normalsize R_n = 2 \times 311.04 + 4 \times 291.6 = 1788.48 \; \mathrm%7BkN%7D $$

 

ΦRn

Mathinline
body--uriencoded--$$ \normalsize \varphi R_n = 0.75 \times 1788.48 = 1341.36\; \mathrm%7BkN%7D $$

 

Required

Available

Ratio

Control

425.018 kN

1341.36 kN

0.317

Bolt Bearing on Beam Flange

The bearing strength limit states of the connection plate, which are “shear tear out” and “ovalization of bolt hole” for both end and inner bolts, are checked according to AISC 360-16.

dh

24+3=27 mm

 

Lc,edge

Mathinline
body--uriencoded--$$ \normalsize L_%7Bc,edge%7D = L_e - 0.5d_h = 75 - 0.5 \times 27 = 61.5 \; \mathrm%7Bmm%7D $$

 

Rn

Mathinline
body--uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2L_c \times t \times F_u \\2.4d \times t \times F_u \end%7Bmatrix%7D\right] \end%7Baligned%7D

AISC 360-16 J3-6a

Rn-edge

Mathinline
body--uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2(61.5)(14.6)(360 \times 10%5e%7B-3%7D) \\2.4(24)(14.6)(360 \times 10%5e%7B-3%7D) \end%7Bmatrix%7D\right] \end%7Baligned%7D =302.746\; \mathrm%7BkN%7D

 

Lc,spacing

Mathinline
body--uriencoded--$$ \normalsize L_%7Bc,spacing%7D = 72 - 27 = 45\; \mathrm%7Bmm%7D $$

 

Rn-spacing

Mathinline
body--uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2(45)(14.6)(360 \times 10%5e%7B-3%7D) \\2.4(24)(14.6)(360 \times 10%5e%7B-3%7D) \end%7Bmatrix%7D\right] \end%7Baligned%7D =283.824\; \mathrm%7BkN%7D

 

Rn

Mathinline
body--uriencoded--$$ \normalsize R_n = n_e R_%7Bn-edge%7D + n_s R_%7Bn-spacing%7D $$

Mathinline
body--uriencoded--$$ \normalsize R_n = 2 \times 302.746 + 4 \times 283.824 = 1740.788 \; \mathrm%7BkN%7D $$

 

ΦRn

Mathinline
body--uriencoded--$$ \normalsize \varphi R_n = 0.75 \times 1740.788 = 1305.591 \; \mathrm%7BkN%7D $$

 

Required

Available

Ratio

Control

418.114 kN

1305.591 kN

0.320

Flange Plate Tension Yield

The yield limit state of the connection plate subjected to tension is checked according to AISC 360-16.

Ag

Mathinline
body--uriencoded--$$ \normalsize A_%7Bg%7D = h_p \times t_ p = 180 \times 15 =2700 $$\; \mathrm%7Bmm%5e2%7D$$

 

Fy

235 N/mm2

 

Rn

Mathinline
body--uriencoded--$$ \normalsize R_n = F_%7By%7DA_g = 235 \times 2700 \times 10%5e%7B-3%7D = 634.5 $$\; \mathrm%7BkN%7D$$

AISC 360-16 J4-1

ΦRn

Mathinline
body$$ --uriencoded--$$ \normalsize \varphi R_n = 0.9 \times 634.5 = 571.05 \; \mathrm%7BkN%7D $$

Required

Available

Ratio

Control

301.881 kN

571.92 kN

0.529

Flange Plate Tension Rupture

The limit state of the flange plate tension rupture is checked according to AISC 360-16.

An

Mathinline
body--uriencoded--$$ \normalsize A_n = 15( 180 - 2 \times (24 + 3 + 2 ) ) = 1830 \; \mathrm%7Bmm%5e2%7D $$

 

Ae

Mathinline
body--uriencoded--$$ \normalsize A_e = A_n \times U = 1830 \times 1 = 1830 \; \mathrm%7Bmm%5e2%7D $$

 

Fu

360 N/mm2

 

U

1.00

 

Rn

Mathinline
body--uriencoded--$$ \normalsize R_n = F_%7Bu%7DA_e = 360 \times 1830 \times 10%5e%7B-3%7D = 658.8 \; \mathrm%7BkN%7D $$

AISC 360-16 J4-2

ΦRn

Mathinline
body--uriencoded--$$ \normalsize \varphi R_n = 0.75 \times 658.8 = 494.1 \; \mathrm%7BkN%7D $$

 

Required

Available

Ratio

Control

301.881 kN

494.1 kN

0.611

Flange Plate Block Shear

The block shear limit state is checked according to AISC 360-16. All block shear modes combined with tensile failure on one plane and shear failure on a perpendicular plane are checked according to AISC 360-16.

Ag

Mathinline
body--uriencoded--$$ \normalsize A_%7Bg%7D = 15 ( 4 \times 72 + 2 \times 75 ) =6570 \; \; \mathrm%7Bmm%5e2%7D $$

 

Anv

Mathinline
body--uriencoded--$$ \normalsize A_%7Bnv%7D = 6570 - 2 ( 2.5 \times 29 \times 15 ) =4395 \; \mathrm%7Bmm%5e2%7D $$

 

Ant

Mathinline
body--uriencoded--$$ \normalsize A_%7Bnt%7D = 15 \times 2( 35 - 0.5 \times 29 ) =615 $$\; \mathrm%7Bmm%5e2%7D$$

 

Fy

235 N/mm2

 

Fu

360 N/mm2

 

Ubs

1.0

 

 

Mathinline
body--uriencoded--$$ \normalsize U_%7Bbs%7D F_u A_%7Bnt%7D = 1 \times 360 \times 10%5e%7B-3%7D \times 615 = 221.4\; \mathrm%7BkN%7D $$

Mathinline
body--uriencoded--$$ \normalsize 0.6 F_%7Bu%7D A_%7Bnv%7D = 0.6 \times 360 \times 10%5e%7B-3%7D \times 4470 = 965.52 $$\; \mathrm%7BkN%7D$$

Mathinline
body--uriencoded--$$ \normalsize 0.6 F_%7By%7D A_%7Bg%7D = 0.6 \times 235 \times 10%5e%7B-3%7D \times 6570 = 926.37\; \mathrm%7BkN%7D $$

 

Rn

Mathinline
body--uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 0.6F_uA_%7Bnv%7D \\0.6F_yA_%7Bg%7D \end%7Bmatrix%7D\right] \end%7Baligned%7D + U_%7Bbs%7DF_uA_%7Bnt%7D
Mathinline
body--uriencoded-- \normalsize R_n =926.37+221.4=1147.77\; \mathrm%7BkN%7D

AISC 360-16 J4-5

ΦRn

Mathinline
body--uriencoded--$$ \normalsize \varphi R_n = 0.75 \times 1147.77 = 860.8275 \; \mathrm%7BkN%7D $$

 

Required

Available

Ratio

Control

301.881 kN

860.828 kN

0.351

Beam Flange Block Shear

The block shear limit state is checked according to AISC 360-16. All block shear modes combined with tensile failure on one plane and shear failure on a perpendicular plane are checked according to AISC 360-16.

Ag

Mathinline
body--uriencoded--$$ \normalsize A_%7Bg%7D = 14.6 \times ( 588 - 2 \times 75 ) =6394.8 \; \mathrm%7Bmm%5e2%7D $$

 

Anv

Mathinline
body--uriencoded--$$ \normalsize A_%7Bnv%7D = 6570 - 2 \times ( 2.5 \times 29 \times 15 ) =4395 \; \mathrm%7Bmm%5e2%7D $$

 

Ant

Mathinline
body--uriencoded--$$ \normalsize A_%7Bnt%7D = 14.6 \times 2( 35 - 0.5 \times 29 ) =598.6 \; \mathrm%7Bmm%5e2%7D $$

 

Fy

235 N/mm2

 

Fu

360 N/mm2

 

Ubs

1.0

 

 

Mathinline
body--uriencoded--$$ \normalsize U_%7Bbs%7D F_u A_%7Bnt%7D = 1 \times 360 \times 10%5e%7B-3%7D \times 598.6 = 215.496 $$\; \mathrm%7BkN%7D$$

Mathinline
body--uriencoded--$$ \normalsize 0.6 F_%7Bu%7D A_%7Bnv%7D = 0.6 \times 360 \times 10%5e%7B-3%7D \times 4277.8 = 924 $$924 \; \mathrm%7BkN%7D$$

Mathinline
body--uriencoded--$$ \normalsize 0.6 F_%7By%7D A_%7Bg%7D = 0.6 \times 235 \times 10%5e%7B-3%7D \times 6394.8 = 901.66 $$\; \mathrm%7BkN%7D$$

 

Rn

Mathinline
body--uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 0.6F_uA_%7Bnv%7D \\0.6F_yA_%7Bg%7D \end%7Bmatrix%7D\right] \end%7Baligned%7D + U_%7Bbs%7DF_uA_%7Bnt%7D

Mathinline
body--uriencoded--$$ R_n =901.66 + 215.496 = 1117.156\; \mathrm%7BkN%7D $$

AISC 360-16 J4-5

ΦRn

Mathinline
body--uriencoded--$$ \normalsize \varphi R_n = 0.75 \times 1117.77 = 837.867 $$\; \mathrm%7BkN%7D$$

 

Required

Available

Ratio

Control

301.881 kN

837.867 kN

0.360

Flange Plate Compression Yield

The yield limit state of the connection plate subjected to compression is checked according to AISC 360-16.

K

0.65

 

L

150 mm

 

r

4.33 mm

 

KL / r

22.52

 

Fy

235 N/mm2

 

Ag

Mathinline
body--uriencoded--$$ \normalsize A_%7Bg%7D = h_p \times t_ p = 180 \times 15 =2700 \; \mathrm%7Bmm%5e2%7D $$

 

Rn

Mathinline
body--uriencoded--$$ \normalsize R_n = F_%7By%7DA_%7Bg%7D (KL/r) = 235 \times 10%5e%7B-3%7D \times 2700 = 634.5\; \mathrm%7BkN%7D $$

AISC 360-16 J4-6

ΦRn

Mathinline
body--uriencoded--$$ \normalsize \varphi R_n = 0.9 \times 634.5 = 571.05 $$\; \mathrm%7BkN%7D$$

 

Required

Available

Ratio

Control

418.114 kN

571.05 kN

0.732

Bolt Shear at Web

The shear limit state of end plate bolts is checked according to AISC 360-16.

Ab

Mathinline
body--uriencoded--$$ \normalsize A_b = \dfrac%7B \pi d%5e2%7D %7B4%7D = \dfrac%7B \pi 24%5e2%7D %7B4%7D = 452.389 \; \mathrm%7Bmm%5e2%7D $$

Fn

Mathinline
body--uriencoded--$$ \normalsize F_n = 0.450 F_%7Bub%7D = 0.450 \times 800 = 360 \; \mathrm%7BN/mm%5e2%7D $$

Rn

Mathinline
body--uriencoded--$$ \normalsize R_n = F_n A_b = 2 \times 360 \times 452.389 \times 10%5e%7B-3%7D = 325.72\; \mathrm%7BkN%7D $$

AISC 360-16 J3-1

ΦRn

Mathinline
body--uriencoded--$$ \normalsize \varphi R_n = 0.75 \times 325.72 = 244.29\; \mathrm%7BkN%7D $$

Required

Available

Ratio

Control

0.031 kN

244.29 kN

0.00013

Bolt Bearing on Web Plate

Bearing strength limit states of the connection plate that are “shear tear out” and “ovalization of bolt hole” for both end and inner bolts are checked according to AISC 360-16.

dh

24+3=27 mm

 

Lc,edge

Mathinline
body--uriencoded--$$ \normalsize L_%7Bc,edge%7D = L_e - 0.5d_h = 49.5 - 0.5 \times 27 =36\; \mathrm%7Bmm%7D $$

 

Rn

Mathinline
body--uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2L_c \times t \times F_u \\2.4d \times t \times F_u \end%7Bmatrix%7D\right] \end%7Baligned%7D

AISC 360-16 J3-6a

Rn-edge

Mathinline
body--uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2(36)(10)(360 \times 10%5e%7B-3%7D) \\2.4(24)(10)(360 \times 10%5e%7B-3%7D) \end%7Bmatrix%7D\right] \end%7Baligned%7D =155.5252\; \mathrm%7BkN%7D

 

Rn

Mathinline
body--uriencoded--$$ \normalsize R_%7Bn%7D = n_eR_%7Bn,edge%7D =2 \times 155.52 =311.04\; \mathrm%7BkN%7D $$

 

ΦRn

Mathinline
body--uriencoded--$$ \normalsize \varphi R_n = 0.75 \times 311.04 = 233.28\; \mathrm%7BkN%7D $$

 

Required

Available

Ratio

Control

0.031 kN

233.28 kN

0.0001

Bolt Bearing on Beam Web

Bearing strength limit states of the connection plate that are “shear tear out” and “ovalization of bolt hole” for both end and inner bolts are checked according to AISC 360-16.

dh

24+3=27 mm

 

Lc,edge

Mathinline
body--uriencoded--$$ \normalsize L_%7Bc,edge%7D = L_e - 0.5d_h = 55 - 0.5 \times 27 =41.5\; \mathrm%7Bmm%7D $$

 

Rn

Mathinline
body--uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2L_c \times t \times F_u \\2.4d \times t \times F_u \end%7Bmatrix%7D\right] \end%7Baligned%7D

AISC 360-16 J3-6a

Rn-edge

Mathinline
body--uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2(41.5)(9.4)(360 \times 10%5e%7B-3%7D) \\2.4(24)(9.4)(360 \times 10%5e%7B-3%7D) \end%7Bmatrix%7D\right] \end%7Baligned%7D = 168.52\; \mathrm%7BkN%7D

 

Rn

Mathinline
body--uriencoded--$$ \normalsize R_%7Bn%7D = n_eR_%7Bn,edge%7D =1 \times 168.52 =168.52\; \mathrm%7BkN%7D $$

 

ΦRn

Mathinline
body--uriencoded--$$ \normalsize \varphi R_n = 0.75 \times 168.52 = 126.39 $$\; \mathrm%7BkN%7D$$

 

Required

Available

Ratio

Control

0.031 kN

126.392 kN

0.00024

Web Plate Shear Yield

The shear strength of connecting elements in shear is the minimum value obtained according to the limit states of shear yielding and shear rupture. Shear yielding is checked according to AISC 360-16.

Ag

Mathinline
body--uriencoded--$$ \normalsize A_%7Bg%7D = h_p \times t_ p = 2 \times 325 \times 10 =6500 $$\; \mathrm%7Bmm%5e2%7D$$

 

Fy

235 N/mm2

 

Rn

Mathinline
body--uriencoded--$$ \normalsize R_n = 0.6F_%7By%7DA_g = 0.6 \times 235 \times 10%5e%7B-3%7D \times 6500 = 916.5 \; \mathrm%7BkN%7D $$

AISC 360-16 J4-3

ΦRn

Mathinline
body--uriencoded--$$ \normalsize \varphi R_n = 1 \times 916.5 = 916.5 $$\; \mathrm%7BkN%7D$$

 

Required

Available

Ratio

Control

0.075 kN

916.5 kN

0.0001

Web Plate Shear Rupture

The shear strength of connecting elements in shear is the minimum value obtained according to the limit states of shear yielding and shear rupture. Shear rupture is checked according to AISC 360-16.

Anv

Mathinline
body--uriencoded--$$ \normalsize A_%7Bg%7D = 2\times 10 \times ( 325 -3 \times (24 + 3 + 2 ) ) =4760 \; \mathrm%7Bmm%5e2%7D $$

 

Ae

Mathinline
body--uriencoded--$$ \normalsize A_%7Be%7D = A_n \times U = 4760 \times 1 = 4760 \; \mathrm%7Bmm%5e2%7D $$

 

Fu

360 N/mm2

 

Rn

Mathinline
body--uriencoded--$$ \normalsize R_n = F_%7Bu%7DA_%7Be%7D = 0.6 \times 360 \times 4760 \times 10%5e%7B-3%7D = 1028.16\; \mathrm%7BkN%7D $$

AISC 360-16 J4-4

ΦRn

Mathinline
body--uriencoded--$$ \normalsize \varphi R_n = 0.75 \times 1028.16 = 771.12 $$\; \mathrm%7BkN%7D$$

 

Required

Available

Ratio

Control

0.075 kN

771.12 kN

0.0001

Beam Shear Rupture

The shear strength of connecting elements in shear is the minimum value obtained according to the limit states of shear yielding and shear rupture. Shear rupture is checked according to AISC 360-16.

...

Required

Available

Ratio

Control

0.075 kN

552.76 kN

0.0001

Web Plate Block Shear

The block shear limit state is checked according to AISC 360-16. All block shear modes combined with tensile failure on one plane and shear failure on a perpendicular plane are checked according to AISC 360-16.

Ag

Mathinline
body--uriencoded--$$ \normalsize A_%7Bg%7D = 2\times 10 \times ( 325 -49.5 ) =5510 $$\; \mathrm%7Bmm%5e2%7D$$

 

Anv

Mathinline
body--uriencoded--$$ \normalsize A_%7Bnv%7D = 5510 - 2 \times ( 2.5 \times 29 \times 10 ) =4060 $$\; \mathrm%7Bmm%5e2%7D$$

 

Ant

Mathinline
body--uriencoded--$$ \normalsize A_%7Bnt%7D = 10 \times 2 \times ( 55 - 0.5 \times 29 ) = 810 $$\; \mathrm%7Bmm%5e2%7D$$

 

Fy

235 N/mm2

 

Fu

360 N/mm2

 

Ubs

1.0

 

 

Mathinline
body--uriencoded--$$ \normalsize U_%7Bbs%7D F_u A_%7Bnt%7D = 1 \times 360 \times 10%5e%7B-3%7D \times 810 = 291.6 $$

Mathinline
body--uriencoded--$$ \normalsize 0.6 F_%7Bu%7D A_%7Bnv%7D = 0.6 \times 360 \times 10%5e%7B-3%7D \times 4060 = 876.96 $$

Mathinline
body--uriencoded--$$ \normalsize 0.6 F_%7By%7D A_%7Bg%7D = 0.6 \times 235 \times 10%5e%7B-3%7D \times 5510 = 776.91 $$

 

Rn

Mathinline
body--uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 0.6F_uA_%7Bnv%7D \\0.6F_yA_%7Bg%7D \end%7Bmatrix%7D\right] \end%7Baligned%7D + U_%7Bbs%7DF_uA_%7Bnt%7D
Mathinline
body--uriencoded--R_n = 776.91 + 291.6 =1068.51\; \mathrm%7BkN%7D

AISC 360-16 J4-5

ΦRn

Mathinline
body--uriencoded--$$ \normalsize \varphi R_n = 0.75 \times 1068.51 = 801.38\; \mathrm%7BkN%7D $$

 

Required

Available

Ratio

Control

0.075 kN

801.38 kN

0.0001

...

Panel
panelIconIdatlassian-check_mark
panelIcon:check_mark:
bgColor#E3FCEF

Download ideCAD for Connection Design

Get Started FREE Software for Steel Connections

...