...
...
Symbols
Ab: Non-threaded bolt web characteristic cross-sectional area
Ag: Gross area
An: Net cross-section area
Ae: Effective net cross-sectional area
Avg: Gross area under shear stress
Anv: Net area under shear stress
Ant: Net area under tensile stress
d: Characteristic diameter of the stem of the bolt (the diameter of the non-threaded stem of the bolt)
dh: Bolt hole diameter
Fy: Structural steel characteristic yield strength
Fu: Structural steel characteristic tensile strength
s: Distance between bolt-holecenters
Lc: The clear distance between bolt holes
Le: The distance from the center of the bolt hole to the edge of the assembled element
Leh: The horizontal distance from the center of the bolt hole to the edge of the assembled element
Lev: The vertical distance from the center of the bolt hole to the edge of the assembled element
t: Plate thickness
Rn: Characteristic strength
Ubs: A coefficient considering the spread of tensile stresses
...
Connection Geometry
...
GEOMETRY CHECKS
Bolt Spacing at Flange
The distance between the centers of bolts is checked per AISC 360-16.
smin ≥ 3d | AISC 360-16 J3.3 | | |
s | 72 mm | | |
d | 24 mm | s =72 mm > smin = 3*24=72 mm | √ |
Horizontal Edge Distance at Flange
The distance from the center of the hole to the edge of the connected part in the horizontal direction is checked per AISC 360-16.
Leh ≥ Le-min | AISC 360-16 J3.4 | | |
Leh | 75 mm | Leh ≥ 2d = 2 * 24 = 48 mm conformity check for application | √ |
Le-min | 30 mm | Minimum distance check according to Table J3.4 | √ |
Vertical Edge Distance at Flange
The distance from the center of the hole to the edge of the connected part in the vertical direction is checked per AISC 360-16.
Lev ≥ Le-min | AISC 360-16 J3.4 | | |
Lev | 35 mm | | |
Le- min | 30 mm | Minimum distance check according to AISC 360-16 Table J3.4 | √ |
Bolt Spacing at Web
The distance between the centers of bolts is checked per AISC 360-16.
smin ≥ 3d | AISC 360-16 J3.3 | | |
s | 113 mm | | |
d | 24 mm | s =113 mm > smin = 3*24=72 mm | √ |
Horizontal Edge Distance at Web
The distance from the center of the hole to the edge of the connected part in the horizontal direction is checked per AISC 360-16.
Leh ≥ L e-min | AISC 360-16 J3.4 | | |
Leh | 55 mm | Leh ≥ 2d = 2 * 24 = 48 mm conformity check for application | √ |
Le-min | 30 mm | Minimum distance check according to Table J3.4 | √ |
Vertical Edge Distance at Web
The distance from the center of the hole to the edge of the connected part in the vertical direction is checked per AISC 360-16.
Lev ≥ Le-min | AISC 360-16 J3.3 | | |
Lev | 49.5 mm | L eh ≥ 2d = 2 * 24 = 48 mm conformity check for application | √ |
Le-min | 30 mm | Minimum distance check according to Table J3.4 | √ |
STRENGTH CHECKS
Bolt Shear at Flange
The calculation is made using the Elastic method, one of the methods selected in the steel analysis settings tab. In this check, the operation is performed on half of the symmetry axis and is calculated to form a force pair with the required force.
Ab | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_%7Bb%7D = \dfrac %7B \pi d%5e2%7D%7B4%7D = \dfrac %7B \pi 24%5e2%7D%7B4%7D =452.389 $$\; \mathrm%7Bmm%5e2%7D$$ |
---|
|
| AISC 360-16 J3-1 |
Fn | Mathinline |
---|
body | --uriencoded--$$ \normalsize F_n = 0.450F_%7Bub%7D = 0.450 \times 800 = 360 \; \mathrm%7BN/mm%5e2%7D $$ |
---|
|
| |
Rn | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = F_%7Bn%7DA_b = 6 \times 360 \times 452.389 \times 10%5e%7B-3%7D = 977.16 $$\; \mathrm%7BkN%7D$$ |
---|
|
| |
ΦRn | Mathinline |
---|
body | --uriencoded--$$ \normalsize \varphi R_n = 0.75 \times 977.16 = 732.87 \; \mathrm%7BkN%7D $$ |
---|
|
| |
Required | Ready | Rate | Control |
---|
425.018 kN | 732.87 kN | 0.580 | √ |
Bolt Bearing on Flange Plate
The bearing strength limit states of the connection plate, which are “shear tear out” and “ovalization of bolt hole” for both end and inner bolts, are checked according to AISC 360-16.
dh | 24+3=27 mm | |
Lc,edge | Mathinline |
---|
body | --uriencoded--$$ \normalsize L_%7Bc,edge%7D = L_e - 0.5d_h = 75 - 0.5 \times 27 = 61.5 $$\; \mathrm%7Bmm%7D$$ |
---|
|
| |
Rn | Mathinline |
---|
body | --uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2L_c \times t \times F_u \\2.4d \times t \times F_u \end%7Bmatrix%7D\right] \end%7Baligned%7D |
---|
|
| AISC 360-16 J3-6a |
Rn-edge | Mathinline |
---|
body | --uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2(61.5)(15)(360 \times 10%5e%7B-3%7D) \\2.4(24)(15)(360 \times 10%5e%7B-3%7D) \end%7Bmatrix%7D\right] \end%7Baligned%7D =311.04\; \mathrm%7BkN%7D |
---|
|
| |
Lc,spacing | Mathinline |
---|
body | --uriencoded--$$ \normalsize L_%7Bc,spacing%7D = 72 - 27 = 45 $$\; \mathrm%7Bmm%7D$$ |
---|
|
| |
Rn-spacing | Mathinline |
---|
body | --uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2(45)(15)(360 \times 10%5e%7B-3%7D) \\2.4(24)(15)(360 \times 10%5e%7B-3%7D) \end%7Bmatrix%7D\right] \end%7Baligned%7D =291.6\; \mathrm%7BkN%7D |
---|
|
| |
Rn | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = n_e R_%7Bn-edge%7D + n_s R_%7Bn-spacing%7D $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = 2 \times 311.04 + 4 \times 291.6 = 1788.48 \; \mathrm%7BkN%7D $$ |
---|
|
| |
ΦRn | Mathinline |
---|
body | --uriencoded--$$ \normalsize \varphi R_n = 0.75 \times 1788.48 = 1341.36\; \mathrm%7BkN%7D $$ |
---|
|
| |
Required | Available | Ratio | Control |
---|
425.018 kN | 1341.36 kN | 0.317 | √ |
Bolt Bearing on Beam Flange
The bearing strength limit states of the connection plate, which are “shear tear out” and “ovalization of bolt hole” for both end and inner bolts, are checked according to AISC 360-16.
dh | 24+3=27 mm | |
Lc,edge | Mathinline |
---|
body | --uriencoded--$$ \normalsize L_%7Bc,edge%7D = L_e - 0.5d_h = 75 - 0.5 \times 27 = 61.5 \; \mathrm%7Bmm%7D $$ |
---|
|
| |
Rn | Mathinline |
---|
body | --uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2L_c \times t \times F_u \\2.4d \times t \times F_u \end%7Bmatrix%7D\right] \end%7Baligned%7D |
---|
|
| AISC 360-16 J3-6a |
Rn-edge | Mathinline |
---|
body | --uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2(61.5)(14.6)(360 \times 10%5e%7B-3%7D) \\2.4(24)(14.6)(360 \times 10%5e%7B-3%7D) \end%7Bmatrix%7D\right] \end%7Baligned%7D =302.746\; \mathrm%7BkN%7D |
---|
|
| |
Lc,spacing | Mathinline |
---|
body | --uriencoded--$$ \normalsize L_%7Bc,spacing%7D = 72 - 27 = 45\; \mathrm%7Bmm%7D $$ |
---|
|
| |
Rn-spacing | Mathinline |
---|
body | --uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2(45)(14.6)(360 \times 10%5e%7B-3%7D) \\2.4(24)(14.6)(360 \times 10%5e%7B-3%7D) \end%7Bmatrix%7D\right] \end%7Baligned%7D =283.824\; \mathrm%7BkN%7D |
---|
|
| |
Rn | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = n_e R_%7Bn-edge%7D + n_s R_%7Bn-spacing%7D $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = 2 \times 302.746 + 4 \times 283.824 = 1740.788 \; \mathrm%7BkN%7D $$ |
---|
|
| |
ΦRn | Mathinline |
---|
body | --uriencoded--$$ \normalsize \varphi R_n = 0.75 \times 1740.788 = 1305.591 \; \mathrm%7BkN%7D $$ |
---|
|
| |
Required | Available | Ratio | Control |
---|
418.114 kN | 1305.591 kN | 0.320 | √ |
Flange Plate Tension Yield
The yield limit state of the connection plate subjected to tension is checked according to AISC 360-16.
Ag | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_%7Bg%7D = h_p \times t_ p = 180 \times 15 =2700 $$\; \mathrm%7Bmm%5e2%7D$$ |
---|
|
| |
Fy | 235 N/mm2 | |
Rn | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = F_%7By%7DA_g = 235 \times 2700 \times 10%5e%7B-3%7D = 634.5 $$\; \mathrm%7BkN%7D$$ |
---|
|
| AISC 360-16 J4-1 |
ΦRn | Mathinline |
---|
body | $$ --uriencoded--$$ \normalsize \varphi R_n = 0.9 \times 634.5 = 571.05 \; \mathrm%7BkN%7D $$ |
---|
|
| |
Required | Available | Ratio | Control |
---|
301.881 kN | 571.92 kN | 0.529 | √ |
Flange Plate Tension Rupture
The limit state of the flange plate tension rupture is checked according to AISC 360-16.
An | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_n = 15( 180 - 2 \times (24 + 3 + 2 ) ) = 1830 \; \mathrm%7Bmm%5e2%7D $$ |
---|
|
| |
Ae | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_e = A_n \times U = 1830 \times 1 = 1830 \; \mathrm%7Bmm%5e2%7D $$ |
---|
|
| |
Fu | 360 N/mm2 | |
U | 1.00 | |
Rn | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = F_%7Bu%7DA_e = 360 \times 1830 \times 10%5e%7B-3%7D = 658.8 \; \mathrm%7BkN%7D $$ |
---|
|
| AISC 360-16 J4-2 |
ΦRn | Mathinline |
---|
body | --uriencoded--$$ \normalsize \varphi R_n = 0.75 \times 658.8 = 494.1 \; \mathrm%7BkN%7D $$ |
---|
|
| |
Required | Available | Ratio | Control |
---|
301.881 kN | 494.1 kN | 0.611 | √ |
Flange Plate Block Shear
The block shear limit state is checked according to AISC 360-16. All block shear modes combined with tensile failure on one plane and shear failure on a perpendicular plane are checked according to AISC 360-16.
Ag | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_%7Bg%7D = 15 ( 4 \times 72 + 2 \times 75 ) =6570 \; \; \mathrm%7Bmm%5e2%7D $$ |
---|
|
| |
Anv | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_%7Bnv%7D = 6570 - 2 ( 2.5 \times 29 \times 15 ) =4395 \; \mathrm%7Bmm%5e2%7D $$ |
---|
|
| |
Ant | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_%7Bnt%7D = 15 \times 2( 35 - 0.5 \times 29 ) =615 $$\; \mathrm%7Bmm%5e2%7D$$ |
---|
|
| |
Fy | 235 N/mm2 | |
Fu | 360 N/mm2 | |
Ubs | 1.0 | |
| Mathinline |
---|
body | --uriencoded--$$ \normalsize U_%7Bbs%7D F_u A_%7Bnt%7D = 1 \times 360 \times 10%5e%7B-3%7D \times 615 = 221.4\; \mathrm%7BkN%7D $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize 0.6 F_%7Bu%7D A_%7Bnv%7D = 0.6 \times 360 \times 10%5e%7B-3%7D \times 4470 = 965.52 $$\; \mathrm%7BkN%7D$$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize 0.6 F_%7By%7D A_%7Bg%7D = 0.6 \times 235 \times 10%5e%7B-3%7D \times 6570 = 926.37\; \mathrm%7BkN%7D $$ |
---|
|
| |
Rn | Mathinline |
---|
body | --uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 0.6F_uA_%7Bnv%7D \\0.6F_yA_%7Bg%7D \end%7Bmatrix%7D\right] \end%7Baligned%7D + U_%7Bbs%7DF_uA_%7Bnt%7D |
---|
|
Mathinline |
---|
body | --uriencoded-- \normalsize R_n =926.37+221.4=1147.77\; \mathrm%7BkN%7D |
---|
|
| AISC 360-16 J4-5 |
ΦRn | Mathinline |
---|
body | --uriencoded--$$ \normalsize \varphi R_n = 0.75 \times 1147.77 = 860.8275 \; \mathrm%7BkN%7D $$ |
---|
|
| |
Required | Available | Ratio | Control |
---|
301.881 kN | 860.828 kN | 0.351 | √ |
Beam Flange Block Shear
The block shear limit state is checked according to AISC 360-16. All block shear modes combined with tensile failure on one plane and shear failure on a perpendicular plane are checked according to AISC 360-16.
Ag | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_%7Bg%7D = 14.6 \times ( 588 - 2 \times 75 ) =6394.8 \; \mathrm%7Bmm%5e2%7D $$ |
---|
|
| |
Anv | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_%7Bnv%7D = 6570 - 2 \times ( 2.5 \times 29 \times 15 ) =4395 \; \mathrm%7Bmm%5e2%7D $$ |
---|
|
| |
Ant | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_%7Bnt%7D = 14.6 \times 2( 35 - 0.5 \times 29 ) =598.6 \; \mathrm%7Bmm%5e2%7D $$ |
---|
|
| |
Fy | 235 N/mm2 | |
Fu | 360 N/mm2 | |
Ubs | 1.0 | |
| Mathinline |
---|
body | --uriencoded--$$ \normalsize U_%7Bbs%7D F_u A_%7Bnt%7D = 1 \times 360 \times 10%5e%7B-3%7D \times 598.6 = 215.496 $$\; \mathrm%7BkN%7D$$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize 0.6 F_%7Bu%7D A_%7Bnv%7D = 0.6 \times 360 \times 10%5e%7B-3%7D \times 4277.8 = 924 $$924 \; \mathrm%7BkN%7D$$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize 0.6 F_%7By%7D A_%7Bg%7D = 0.6 \times 235 \times 10%5e%7B-3%7D \times 6394.8 = 901.66 $$\; \mathrm%7BkN%7D$$ |
---|
|
| |
Rn | Mathinline |
---|
body | --uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 0.6F_uA_%7Bnv%7D \\0.6F_yA_%7Bg%7D \end%7Bmatrix%7D\right] \end%7Baligned%7D + U_%7Bbs%7DF_uA_%7Bnt%7D |
---|
|
Mathinline |
---|
body | --uriencoded--$$ R_n =901.66 + 215.496 = 1117.156\; \mathrm%7BkN%7D $$ |
---|
|
| AISC 360-16 J4-5 |
ΦRn | Mathinline |
---|
body | --uriencoded--$$ \normalsize \varphi R_n = 0.75 \times 1117.77 = 837.867 $$\; \mathrm%7BkN%7D$$ |
---|
|
| |
Required | Available | Ratio | Control |
---|
301.881 kN | 837.867 kN | 0.360 | √ |
Flange Plate Compression Yield
The yield limit state of the connection plate subjected to compression is checked according to AISC 360-16.
K | 0.65 | |
L | 150 mm | |
r | 4.33 mm | |
KL / r | 22.52 | |
Fy | 235 N/mm2 | |
Ag | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_%7Bg%7D = h_p \times t_ p = 180 \times 15 =2700 \; \mathrm%7Bmm%5e2%7D $$ |
---|
|
| |
Rn | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = F_%7By%7DA_%7Bg%7D (KL/r) = 235 \times 10%5e%7B-3%7D \times 2700 = 634.5\; \mathrm%7BkN%7D $$ |
---|
|
| AISC 360-16 J4-6 |
ΦRn | Mathinline |
---|
body | --uriencoded--$$ \normalsize \varphi R_n = 0.9 \times 634.5 = 571.05 $$\; \mathrm%7BkN%7D$$ |
---|
|
| |
Required | Available | Ratio | Control |
---|
418.114 kN | 571.05 kN | 0.732 | √ |
Bolt Shear at Web
The shear limit state of end plate bolts is checked according to AISC 360-16.
Ab | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_b = \dfrac%7B \pi d%5e2%7D %7B4%7D = \dfrac%7B \pi 24%5e2%7D %7B4%7D = 452.389 \; \mathrm%7Bmm%5e2%7D $$ |
---|
|
| |
Fn | Mathinline |
---|
body | --uriencoded--$$ \normalsize F_n = 0.450 F_%7Bub%7D = 0.450 \times 800 = 360 \; \mathrm%7BN/mm%5e2%7D $$ |
---|
|
| |
Rn | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = F_n A_b = 2 \times 360 \times 452.389 \times 10%5e%7B-3%7D = 325.72\; \mathrm%7BkN%7D $$ |
---|
|
| AISC 360-16 J3-1 |
ΦRn | Mathinline |
---|
body | --uriencoded--$$ \normalsize \varphi R_n = 0.75 \times 325.72 = 244.29\; \mathrm%7BkN%7D $$ |
---|
|
| |
Required | Available | Ratio | Control |
---|
0.031 kN | 244.29 kN | 0.00013 | √ |
Bolt Bearing on Web Plate
Bearing strength limit states of the connection plate that are “shear tear out” and “ovalization of bolt hole” for both end and inner bolts are checked according to AISC 360-16.
dh | 24+3=27 mm | |
Lc,edge | Mathinline |
---|
body | --uriencoded--$$ \normalsize L_%7Bc,edge%7D = L_e - 0.5d_h = 49.5 - 0.5 \times 27 =36\; \mathrm%7Bmm%7D $$ |
---|
|
| |
Rn | Mathinline |
---|
body | --uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2L_c \times t \times F_u \\2.4d \times t \times F_u \end%7Bmatrix%7D\right] \end%7Baligned%7D |
---|
|
| AISC 360-16 J3-6a |
Rn-edge | Mathinline |
---|
body | --uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2(36)(10)(360 \times 10%5e%7B-3%7D) \\2.4(24)(10)(360 \times 10%5e%7B-3%7D) \end%7Bmatrix%7D\right] \end%7Baligned%7D =155.5252\; \mathrm%7BkN%7D |
---|
|
| |
Rn | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_%7Bn%7D = n_eR_%7Bn,edge%7D =2 \times 155.52 =311.04\; \mathrm%7BkN%7D $$ |
---|
|
| |
ΦRn | Mathinline |
---|
body | --uriencoded--$$ \normalsize \varphi R_n = 0.75 \times 311.04 = 233.28\; \mathrm%7BkN%7D $$ |
---|
|
| |
Required | Available | Ratio | Control |
---|
0.031 kN | 233.28 kN | 0.0001 | √ |
Bolt Bearing on Beam Web
Bearing strength limit states of the connection plate that are “shear tear out” and “ovalization of bolt hole” for both end and inner bolts are checked according to AISC 360-16.
dh | 24+3=27 mm | |
Lc,edge | Mathinline |
---|
body | --uriencoded--$$ \normalsize L_%7Bc,edge%7D = L_e - 0.5d_h = 55 - 0.5 \times 27 =41.5\; \mathrm%7Bmm%7D $$ |
---|
|
| |
Rn | Mathinline |
---|
body | --uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2L_c \times t \times F_u \\2.4d \times t \times F_u \end%7Bmatrix%7D\right] \end%7Baligned%7D |
---|
|
| AISC 360-16 J3-6a |
Rn-edge | Mathinline |
---|
body | --uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2(41.5)(9.4)(360 \times 10%5e%7B-3%7D) \\2.4(24)(9.4)(360 \times 10%5e%7B-3%7D) \end%7Bmatrix%7D\right] \end%7Baligned%7D = 168.52\; \mathrm%7BkN%7D |
---|
|
| |
Rn | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_%7Bn%7D = n_eR_%7Bn,edge%7D =1 \times 168.52 =168.52\; \mathrm%7BkN%7D $$ |
---|
|
| |
ΦRn | Mathinline |
---|
body | --uriencoded--$$ \normalsize \varphi R_n = 0.75 \times 168.52 = 126.39 $$\; \mathrm%7BkN%7D$$ |
---|
|
| |
Required | Available | Ratio | Control |
---|
0.031 kN | 126.392 kN | 0.00024 | √ |
Web Plate Shear Yield
The shear strength of connecting elements in shear is the minimum value obtained according to the limit states of shear yielding and shear rupture. Shear yielding is checked according to AISC 360-16.
Ag | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_%7Bg%7D = h_p \times t_ p = 2 \times 325 \times 10 =6500 $$\; \mathrm%7Bmm%5e2%7D$$ |
---|
|
| |
Fy | 235 N/mm2 | |
Rn | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = 0.6F_%7By%7DA_g = 0.6 \times 235 \times 10%5e%7B-3%7D \times 6500 = 916.5 \; \mathrm%7BkN%7D $$ |
---|
|
| AISC 360-16 J4-3 |
ΦRn | Mathinline |
---|
body | --uriencoded--$$ \normalsize \varphi R_n = 1 \times 916.5 = 916.5 $$\; \mathrm%7BkN%7D$$ |
---|
|
| |
Required | Available | Ratio | Control |
---|
0.075 kN | 916.5 kN | 0.0001 | √ |
Web Plate Shear Rupture
The shear strength of connecting elements in shear is the minimum value obtained according to the limit states of shear yielding and shear rupture. Shear rupture is checked according to AISC 360-16.
Anv | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_%7Bg%7D = 2\times 10 \times ( 325 -3 \times (24 + 3 + 2 ) ) =4760 \; \mathrm%7Bmm%5e2%7D $$ |
---|
|
| |
Ae | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_%7Be%7D = A_n \times U = 4760 \times 1 = 4760 \; \mathrm%7Bmm%5e2%7D $$ |
---|
|
| |
Fu | 360 N/mm2 | |
Rn | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = F_%7Bu%7DA_%7Be%7D = 0.6 \times 360 \times 4760 \times 10%5e%7B-3%7D = 1028.16\; \mathrm%7BkN%7D $$ |
---|
|
| AISC 360-16 J4-4 |
ΦRn | Mathinline |
---|
body | --uriencoded--$$ \normalsize \varphi R_n = 0.75 \times 1028.16 = 771.12 $$\; \mathrm%7BkN%7D$$ |
---|
|
| |
Required | Available | Ratio | Control |
---|
0.075 kN | 771.12 kN | 0.0001 | √ |
Beam Shear Rupture
The shear strength of connecting elements in shear is the minimum value obtained according to the limit states of shear yielding and shear rupture. Shear rupture is checked according to AISC 360-16.
...
Required | Available | Ratio | Control |
---|
0.075 kN | 552.76 kN | 0.0001 | √ |
Web Plate Block Shear
The block shear limit state is checked according to AISC 360-16. All block shear modes combined with tensile failure on one plane and shear failure on a perpendicular plane are checked according to AISC 360-16.
Ag | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_%7Bg%7D = 2\times 10 \times ( 325 -49.5 ) =5510 $$\; \mathrm%7Bmm%5e2%7D$$ |
---|
|
| |
Anv | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_%7Bnv%7D = 5510 - 2 \times ( 2.5 \times 29 \times 10 ) =4060 $$\; \mathrm%7Bmm%5e2%7D$$ |
---|
|
| |
Ant | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_%7Bnt%7D = 10 \times 2 \times ( 55 - 0.5 \times 29 ) = 810 $$\; \mathrm%7Bmm%5e2%7D$$ |
---|
|
| |
Fy | 235 N/mm2 | |
Fu | 360 N/mm2 | |
Ubs | 1.0 | |
| Mathinline |
---|
body | --uriencoded--$$ \normalsize U_%7Bbs%7D F_u A_%7Bnt%7D = 1 \times 360 \times 10%5e%7B-3%7D \times 810 = 291.6 $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize 0.6 F_%7Bu%7D A_%7Bnv%7D = 0.6 \times 360 \times 10%5e%7B-3%7D \times 4060 = 876.96 $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize 0.6 F_%7By%7D A_%7Bg%7D = 0.6 \times 235 \times 10%5e%7B-3%7D \times 5510 = 776.91 $$ |
---|
|
| |
Rn | Mathinline |
---|
body | --uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 0.6F_uA_%7Bnv%7D \\0.6F_yA_%7Bg%7D \end%7Bmatrix%7D\right] \end%7Baligned%7D + U_%7Bbs%7DF_uA_%7Bnt%7D |
---|
|
Mathinline |
---|
body | --uriencoded--R_n = 776.91 + 291.6 =1068.51\; \mathrm%7BkN%7D |
---|
|
| AISC 360-16 J4-5 |
ΦRn | Mathinline |
---|
body | --uriencoded--$$ \normalsize \varphi R_n = 0.75 \times 1068.51 = 801.38\; \mathrm%7BkN%7D $$ |
---|
|
| |
Required | Available | Ratio | Control |
---|
0.075 kN | 801.38 kN | 0.0001 | √ |
...
Panel |
---|
panelIconId | atlassian-check_mark |
---|
panelIcon | :check_mark: |
---|
bgColor | #E3FCEF |
---|
|
Download ideCAD for Connection DesignGet Started FREE Software for Steel Connections |
...