Punching In the example calculation, a punching calculation will be made for a column with whose dimensions of 100x50 in the sample calculation for V10.19are 100x50. Other parameters in the account are listed as follows.flooring
...
...
...
fctd = 1380.42 kN/m2 (Concrete design tensile strength)
The slab utility useful height, d , calculationis calculated;
d = (slab Slab thickness - slab spacers Slab cover ) = 27 - 3 = 24cm24 cm
Column dimensions
c1 = 100 cm c2 = 50 cm
The punch punching circumference (up) is calculated at a distance d/2 from the column surface and is shown in the image picture below. In this case, we can add distance d to the column dimensions the following operations are performed to find the edges of the punch perimeter (b1, b2) of the punching.
Mathinline |
---|
body | $$ \normalsize b_1=c_1 |
---|
|
+ d = 100 cmb Mathinline |
---|
body | $$ \normalsize b_2=c_2 |
---|
|
+ d = 100 cm...
In this case, the punching circumference, (up ), and the punching area(Az) obtained by multiplying the punch punching perimeter by the slab flooring useful height, d , is calculated as shown below.
**\times(124+74) = 396 \; cm = 3.96 \; m $$ |
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize A_z=u_p |
---|
|
* * 095040 m 2The shear stresses plotted below are the punch punching stresses perpendicular to the floor slab plane.
...
The J values are the sum of the polar inertia and second moments of inertia of the surfaces forming the punching area (Az). Also According to TBDY Equation 7.28 according γ f ,this value is calculated according to the loading direction coefficient taken into account. Here, separate calculations are made in the X and Y directions of the Column for both values.considering the γf coefficient .
Calculation of J and γf Coefficients for Strong Axis (Major Aspects) to J and γ f Coefficient AccountThe following steps are followed for the calculation of the coefficient j Direction)
The coefficients γf(maj) and γv(maj) are calculated as follows.
...
Mathinline |
---|
body | --uriencoded--$$ \normalsize \gamma_%7Bf(maj)%7D = \frac %7B1%7D %7B1+\frac 2 3 \sqrt%7Bb_1/b_2%7D%7D = \frac %7B1%7D %7B1+\frac 2 3 \sqrt%7B1.24/0.74%7D%7D = 0.537 \; $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize \gamma_%7Bv(maj)%7D =1- \gamma_%7Bf(maj)%7D = 1-0.537 = 0.463 $$ |
---|
|
To find the value of J (maj) value, the following way is followedoperations are performed.
c (maj) is the center of gravity distance perpendicular to the moment vector, which is considered whenfinding the J value ( J (maj) ) on the strong axis of the section. Since the punching circumference is rectangular;c, the c (maj) value is calculated as follows.
Mathinline |
---|
body | --uriencoded--$$ \normalsize c_%7B(maj)%7D = b_1/2 = 124/2=62 \; cm = 0.62 \; m $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize c'_%7B(maj)%7D = b_1-c_%7B(maj)%7D= 124-62=62 \; cm = 0.62 \; m $$ |
---|
|
In this case, the The polar inertia and the two second moments of inertia are respectively calculated as follows, respectively.
...
Mathinline |
---|
body | --uriencoded--$$ \normalsize J_%7B1(maj)%7D = \left( \frac%7Bb_1d%5e3%7D%7B12%7D + \frac%7Bb_1%5e3d%7D%7B12%7D \right) \times 2 = \left( \frac%7B1.24 \times 0.24%5e3%7D%7B12%7D + \frac%7B1.24%5e3 \times 0.24%7D%7B12%7D \right) \times 2 = 0.079122 \; m%5e4 $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize J_%7B2(maj)%7D = b_2 d \times c%5e2_%7B(maj)%7D \times 2 = 0.74 \times 0.24 \times 0.62%5e2 \times 2= 0.1365388 \; m%5e4 $$ |
---|
|
In this case, the sum of the polar inertia and the second moments of inertia J about the strong (majmajor) with respect to the major axis of the section, J (maj) , is found as follows.
Mathinline |
---|
body | --uriencoded--$$ \normalsize J_%7B(maj)%7D = J |
---|
|
1 2 _%7B2(maj)%7D = 0.079122 + 0.1365388 = 0. |
|
21566080 m 4 2156608 \; m%5e4 = 21566080 |
|
cm 4Calculation of J and γf Coefficients for Weak Axis (Minor Direction) to J and γ f Coefficient AccountFor
The following steps are followed for the calculation of the γ f(min) and γ v (min) coefficient, the following steps are followed.
...
The following method is used to find the (min) coefficients.
Mathinline |
---|
body | --uriencoded--$$ \normalsize \gamma_%7Bf(min)%7D = \frac %7B1%7D %7B1+\frac 2 3 \sqrt%7Bb_2/b_1%7D%7D = \frac %7B1%7D %7B1+\frac 2 3 \sqrt%7B0.74/1.24%7D%7D = 0.660 \; $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize \gamma_%7Bv(min)%7D =1- \gamma_%7Bf(maj)%7D = 1-0.66 = 0.340 $$ |
---|
|
The J(min) value is found as follows.
The c(min) value is the center of gravity distance perpendicular to the moment vector, which is considered whenfinding the J value (J (min)) on the strong weak axis of the section. Since the punching circumference is rectangular;
Mathinline |
---|
body | --uriencoded--$$ \normalsize c_%7B(min)%7D = b |
---|
|
1 _2/2 = 74/2=37 \; cm = 0.37 \; m $$ |
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize c'_%7B(min)%7D = b |
---|
|
1 _2-c_%7B(min)%7D= 74-37=37 \; cm = 0.37 \; m $$ |
|
In this case, the polar moments of inertia and the two second moments of inertia are respectively found as follows, respectively.
...
Mathinline |
---|
body | --uriencoded--$$ \normalsize J_%7B1(min)%7D = \left( \frac%7Bb_2d%5e3%7D%7B12%7D + \frac%7Bb_2%5e3d%7D%7B12%7D \right) \times 2 = \left( \frac%7B0.74 \times 0.24%5e3%7D%7B12%7D + \frac%7B0.74%5e3 \times 0.24%7D%7B12%7D \right) \times 2 = 0.01791392 \; m%5e4 $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize J_%7B2(min)%7D = b_1 d \times c%5e2_%7B(min)%7D \times 2 = 1.24 \times 0.24 \times 0.37%5e2 \times 2= 0.08148288 \; m%5e4 $$ |
---|
|
In this case, the sum of the polar inertia and the second moments of inertia J about the weak (minminor) with respect to the minor axis of the section, J (min) , is found as follows.
Mathinline |
---|
body | --uriencoded--$$ \normalsize J_%7B(min)%7D = J |
---|
|
1 2 017914 081483 m 4 cm 4Finding Punching Stresses
The forces to be considered for punching stresses and the values obtained obtained from hand the geometry are given below.
Vd = 679.31 kN
DMd(maj) = 394.624 kNm
DMd(min) = 65.3914 kNm
Az = 0.
...
9504 m2
γf(maj) = 0.537
γv(maj) = 0.463
γf(min) = 0.660
γv(min) = 0.340
J(maj)
...
...
...
J(min) = = 0.0993968 m4 ,
c(maj) = 0.62 m
...
...
...
If we substitute The punching stresses are found by substituting all the above values we found above for in the stress formulas together with the internal forces based on the punching design;
...
Among the values of essential to the punching design.
Mathinline |
---|
body | --uriencoded--$$ \normalsize \tau_%7Bpd,1%7D = \frac %7BV_d%7D%7BA_z%7D + \frac %7B \gamma_%7Bv(maj)%7DDM_%7Bd(maj)%7Dc_%7B(maj)%7D %7D %7BJ_%7B(maj)%7D%7D + \frac %7B \gamma_%7Bv(min)%7DDM_%7Bd(min)%7Dc_%7B(min)%7D %7D %7BJ_%7B(min)%7D%7D $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize \tau_%7Bpd,2%7D = \frac %7BV_d%7D%7BA_z%7D - \frac %7B \gamma_%7Bv(maj)%7DDM_%7Bd(maj)%7Dc_%7B(maj)%7D %7D %7BJ_%7B(maj)%7D%7D - \frac %7B \gamma_%7Bv(min)%7DDM_%7Bd(min)%7Dc_%7B(min)%7D %7D %7BJ_%7B(min)%7D%7D $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize \tau_%7Bpd,1%7D = \frac %7B679.31%7D%7B0.9504%7D + \frac %7B 0.463 \times 394.624 \times 0.62 %7D %7B0.2156608%7D + \frac %7B 0.34 \times 65.39 \times 0.37 %7D %7B0.0993968%7D = 1322.795 \; kN/m%5e2 $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize \tau_%7Bpd,2%7D = \frac %7B679.31%7D%7B0.9504%7D - \frac %7B 0.463 \times 394.624 \times 0.62 %7D %7B0.2156608%7D - \frac %7B 0.34 \times 65.39 \times 0.37 %7D %7B0.0993968%7D = 106.73 \; kN/m%5e2 $$ |
---|
|
The absolute value of τ pd,1, τ pd,2, the absolute value is τ pd,1 = 13231322.0 795 kN/m 2 . If we compare this value with the This obtained value is compared with the fctd value, which is the concrete designtensile strength f ctd value;.
τpd,1 = 13231322.0 795 kN/m2 <f < fctd = 1380.42 kN/m2
We reach the result. From here, we can conclude that the Upholstery punching strength of this column is sufficient. These values can also be compared with the report results.
...
Related Topics
...
Punching Shear Check
...
Punching Shear Stress at Critical Section (7.11.8)
...
(8.3.1) TS500 Puching Shear Design Conditions
...
Punching Shear Stress Check Report
...
panelIconId | atlassian-info |
---|
panelIcon | :info: |
---|
bgColor | #E6FCFF |
---|
|
Download ideCAD for ACI 318-19 |