...
Mathinline |
---|
body | $$ \normalsize u_p=2\times(b_1+b_2) = 2\times(124+74) = 396 \; cm = 3.96 \; cm m $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize A_z=u_p\times d = 3.96\times0.24=0.9504 \; m%5e2 $$ |
---|
|
...
Mathinline |
---|
body | --uriencoded--$$ \normalsize c'_%7B(maj)%7D = b_1-c_%7B(maj)%7D= 124-62=62 \; cm = 0.62 \; m $$ |
---|
|
In this case, the The polar inertia and the two second moments of inertia are respectively calculated as follows, respectively.
...
Mathinline |
---|
body | --uriencoded--$$ \normalsize J_%7B1(maj)%7D = \left( \frac%7Bb_1d%5e3%7D%7B12%7D + \frac%7Bb_1%5e3d%7D%7B12%7D \right) \times 2 = \left( \frac%7B1.24 \times 0.24%5e3%7D%7B12%7D + \frac%7B1.24%5e3 \times 0.24%7D%7B12%7D \right) \times 2 = 0.079122 \; m%5e4 $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize J_%7B2(maj)%7D = b_2 d \times c%5e2_%7B(maj)%7D \times 2 = 0.74 \times 0.24 \times 0.62%5e2 \times 2= 0.1365388 \; m%5e4 $$ |
---|
|
In this case, the sum of the polar inertia and the second moments of inertia J about the strong (majmajor) with respect to the major axis of the section, J (maj) , is found as follows.
Mathinline |
---|
body | --uriencoded--$$ \normalsize J_%7B(maj)%7D = J |
---|
|
1 2 _%7B2(maj)%7D = 0.079122 + 0.1365388 = 0. |
|
21566080 m 4 2156608 \; m%5e4 = 21566080 |
|
cm 4Calculation of J and γf Coefficients for Weak Axis (Minor Direction) to J and γ f Coefficient AccountFor
The following steps are followed for the calculation of the γ f(min) and γ v (min) coefficient, the following steps are followed.
...
The following method is used to find the (min) coefficients.
Mathinline |
---|
body | --uriencoded--$$ \normalsize \gamma_%7Bf(min)%7D = \frac %7B1%7D %7B1+\frac 2 3 \sqrt%7Bb_2/b_1%7D%7D = \frac %7B1%7D %7B1+\frac 2 3 \sqrt%7B0.74/1.24%7D%7D = 0.660 \; $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize \gamma_%7Bv(min)%7D =1- \gamma_%7Bf(maj)%7D = 1-0.66 = 0.340 $$ |
---|
|
The J(min) value is found as follows.
The c(min) value is the center of gravity distance perpendicular to the moment vector, which is considered whenfinding the J value (J (min)) on the strong weak axis of the section. Since the punching circumference is rectangular;
Mathinline |
---|
body | --uriencoded--$$ \normalsize c_%7B(min)%7D = b |
---|
|
1 _2/2 = 74/2=37 \; cm = 0.37 \; m $$ |
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize c'_%7B(min)%7D = b |
---|
|
1 _2-c_%7B(min)%7D= 74-37=37 \; cm = 0.37 \; m $$ |
|
In this case, the polar moments of inertia and the two second moments of inertia are respectively found as follows, respectively.
...
Mathinline |
---|
body | --uriencoded--$$ \normalsize J_%7B1(min)%7D = \left( \frac%7Bb_2d%5e3%7D%7B12%7D + \frac%7Bb_2%5e3d%7D%7B12%7D \right) \times 2 = \left( \frac%7B0.74 \times 0.24%5e3%7D%7B12%7D + \frac%7B0.74%5e3 \times 0.24%7D%7B12%7D \right) \times 2 = 0.01791392 \; m%5e4 $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize J_%7B2(min)%7D = b_1 d \times c%5e2_%7B(min)%7D \times 2 = 1.24 \times 0.24 \times 0.37%5e2 \times 2= 0.08148288 \; m%5e4 $$ |
---|
|
In this case, the sum of the polar inertia and the second moments of inertia J about the weak (minminor) with respect to the minor axis of the section, J (min) , is found as follows.
Mathinline |
---|
body | --uriencoded--$$ \normalsize J_%7B(min)%7D = J |
---|
|
1 2 017914 081483 m 4 cm 4Finding Punching Stresses
The forces to be considered for punching stresses and the values obtained obtained from hand the geometry are given below.
Vd = 679.31 kN
DMd(maj) = 394.624 kNm
DMd(min) = 65.3914 kNm
Az = 0.
...
9504 m2
γf(maj) = 0.537
γv(maj) = 0.463
γf(min) = 0.660
γv(min) = 0.340
J(maj) =
...
...
...
J(min) = = 0.0993968 m4 ,
c(maj) = 0.62 m
...
...
...
If we substitute The punching stresses are found by substituting all the above values we found above for in the stress formulas together with the internal forces based on the punching design;
...
Among the values of essential to the punching design.
Mathinline |
---|
body | --uriencoded--$$ \normalsize \tau_%7Bpd,1%7D = \frac %7BV_d%7D%7BA_z%7D + \frac %7B \gamma_%7Bv(maj)%7DDM_%7Bd(maj)%7Dc_%7B(maj)%7D %7D %7BJ_%7B(maj)%7D%7D + \frac %7B \gamma_%7Bv(min)%7DDM_%7Bd(min)%7Dc_%7B(min)%7D %7D %7BJ_%7B(min)%7D%7D $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize \tau_%7Bpd,2%7D = \frac %7BV_d%7D%7BA_z%7D - \frac %7B \gamma_%7Bv(maj)%7DDM_%7Bd(maj)%7Dc_%7B(maj)%7D %7D %7BJ_%7B(maj)%7D%7D - \frac %7B \gamma_%7Bv(min)%7DDM_%7Bd(min)%7Dc_%7B(min)%7D %7D %7BJ_%7B(min)%7D%7D $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize \tau_%7Bpd,1%7D = \frac %7B679.31%7D%7B0.9504%7D + \frac %7B 0.463 \times 394.624 \times 0.62 %7D %7B0.2156608%7D + \frac %7B 0.34 \times 65.39 \times 0.37 %7D %7B0.0993968%7D = 1322.795 \; kN/m%5e2 $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize \tau_%7Bpd,2%7D = \frac %7B679.31%7D%7B0.9504%7D - \frac %7B 0.463 \times 394.624 \times 0.62 %7D %7B0.2156608%7D - \frac %7B 0.34 \times 65.39 \times 0.37 %7D %7B0.0993968%7D = 106.73 \; kN/m%5e2 $$ |
---|
|
The absolute value of τ pd,1, τ pd,2, the absolute value is τ pd,1 = 13231322.0 795 kN/m 2 . If we compare this value with This obtained value is compared with the fctd value, which is the concrete designtensile strength f ctd value;.
τpd,1 = 13231322.0 795 kN/m2 <f < fctd = 1380.42 kN/m2
We reach the result. From here, we can conclude that the Upholstery punching strength of this column is sufficient. These values can also be compared with the report results.
Related Topics
...
Punching Shear Check
...
Punching Shear Stress at Critical Section (7.11.8)
...
(8.3.1) TS500 Puching Shear Design Conditions
...
Punching Shear Stress Check Report
...
Panel |
---|
panelIconId | atlassian-info |
---|
panelIcon | :info: |
---|
bgColor | #E6FCFF |
---|
|
Download ideCAD for ACI 318-19 |