...
Lev ≥ L e-min | AISC 360-16 J3.4 | | |
Lev | 45 mm | | |
Le-min | 30 mm | Minimum distance check according to Table J3.4 | √ |
Strength Controls
Base Plate Thickness (
...
Compression)
The required plate thickness is determined according to AISC Steel Design Guide 1 Eq.3.3.15a.
fc | 25000 kN/m2 | |
A1 Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_%7B1%7D = 900 \times 500 \times 10%5e%7B-6%7D = 0.45 \; \mathrm%7Bm%5e2%7D $$ |
---|
|
| |
A2 Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_%7B2%7D = 900 \times 500 \times 10%5e%7B-6%7D = 0.45\; \mathrm%7Bm%5e2%7D $$ |
---|
|
| |
qmax Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize q_%7Bmax%7D = \varphi_c f_%7Bp(max)%7D B = 0.65 \times 21250 \times 0.5 = 6906.25 \; \mathrm%7BkN/m%7D $$ |
---|
|
| |
fp(max) Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize f_%7Bp(max)%7D = 0.85 f_c \sqrt %7B \dfrac%7BA_2%7D%7BA_1%7D %7D \leq 1.7f_c $$ |
---|
|
| |
fp(max) Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize f_%7Bp(max)%7D = 0.85 \times 25000 \sqrt %7B \dfrac%7B0.45%7D%7B0.45%7D %7D = 21250 \leq 1.7 \times 25000 =42500 \; \mathrm%7BkN/m%5e2%7D $$ |
---|
|
| |
e Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize e = \dfrac%7BM%7D%7BP%7D = \dfrac%7B365.17%7D%7B739.22%7D \times 10%5e3 =493.994 \; \mathrm%7Bmm%7D $$ |
---|
|
| |
ecrit Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize e_%7Bcrit%7D = \dfrac%7BN%7D%7B2%7D - \dfrac%7BP%7D%7B2q_%7Bmax%7D%7D = \dfrac%7B900%7D%7B2%7D - \dfrac%7B739.22%7D%7B2 \times 6906.25 \times 10%5e%7B-3%7D%7D =396.482 \; \mathrm%7Bmm%7D $$ |
---|
|
| |
Y Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize Y = \left ( f + \dfrac%7BN%7D%7B2%7D \right ) \mp \sqrt%7B \left ( f +\dfrac%7BN%7D%7B2%7D \right )%5e2 - \dfrac%7B2P (e + f)%7D %7Bq_%7Bmax%7D%7D %7D $$ |
---|
|
| |
Y Image Removed | Mathinline |
---|
body | --uriencoded--$$ \small Y = \left ( 405 + \dfrac%7B900 %7D%7B2%7D \right ) \mp \sqrt%7B \left ( 405 +\dfrac%7B900%7D%7B2%7D \right )%5e2 - \dfrac%7B2 \times 739.22 (493.994 + 405)%7D %7B6906.25%7D %7D $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \small Y =121.123\; \mathrm%7Bmm%7D $$ |
---|
|
| |
f Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize f = \dfrac%7BN%7D%7B2%7D - l_e = \dfrac%7B900%7D%7B2%7D - 45 = 405 \; \mathrm%7Bmm%7D $$ |
---|
|
| |
le | 45 mm | |
l | max(m,n)=141.25 | |
m Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize m = \dfrac%7BN - 0.95h%7D%7B2%7D = \dfrac%7B900 -0.95 \times 650%7D%7B2%7D =141.25\; \mathrm%7Bmm%7D $$ |
---|
|
| |
n Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize n = \dfrac%7BB - 0.8b%7D%7B2%7D = \dfrac%7B500 -0.8 \times 300%7D%7B2%7D =130\; \mathrm%7Bmm%7D $$ |
---|
|
| |
h | 650 mm | |
b | 300 mm | |
N | 900 mm | |
B | 500 mm | |
M | 365.17 kNm | |
P | 739.22 kN | |
y | 355 N/mm2 | |
treq Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize t_%7Breq%7D = 2 \sqrt %7B \dfrac%7B \varphi_c f_%7Bp(max) %7D Y( l - \dfrac%7BY%7D%7B2%7D ) %7D%7B\varphi F_y %7D %7D =41.11\; \mathrm%7Bmm%7D $$ |
---|
| | AISC DG-1-2nd 3.3.15.a |
Required | Available | Ratio | Control |
---|
41.11 mm | 42 mm | 0.979 | √ |
...
The required base plate thickness for tension is determined according to AISC Steel Design Guide 1 Eq.3.4.7a.
fc | 25000 kN/m2 | |
A1 Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_%7B1%7D = 900 \times 500 \times 10%5e%7B-6%7D = 0.45 \; \mathrm%7Bm%5e2%7D $$ |
---|
|
| |
A2 Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_%7B2%7D = 900 \times 500 \times 10%5e%7B-6%7D = 0.45 \; \mathrm%7Bm%5e2%7D $$ |
---|
|
| |
qmax Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize q_%7Bmax%7D = \varphi_c f_%7Bp(max)%7D B = 0.65 \times 21250 \times 0.5 = 6906.25 \; \mathrm%7BkN/m%7D $$ |
---|
|
| |
e Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize e = \dfrac%7BM%7D%7BP%7D = \dfrac%7B365.17%7D%7B739.22%7D \times 10%5e3 =493.994\; \mathrm%7Bmm%7D $$ |
---|
|
| |
ecrit Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize e_%7Bcrit%7D = \dfrac%7BN%7D%7B2%7D - \dfrac%7BP%7D%7B2q_%7Bmax%7D%7D = \dfrac%7B900%7D%7B2%7D - \dfrac%7B739.22%7D%7B2 \times 6906.25 \times 10%5e%7B-3%7D %7D =396.482\; \mathrm%7Bmm%7D $$ |
---|
|
| |
T Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize T = q_%7Bmax%7D Y - P = 6906.25 \times 121.123 \times 10%5e%7B-3%7D - 739.22 = 97.286 \; \mathrm%7BkN%7D $$ |
---|
|
| |
Y | Image Removed | | Y | Image Removed Mathinline |
---|
body | --uriencoded--$$ \normalsize Y = \left ( f + \dfrac%7BN%7D%7B2%7D \right ) \mp \sqrt%7B \left ( f +\dfrac%7BN%7D%7B2%7D \right )%5e2 - \dfrac%7B2P (e + f)%7D %7Bq_%7Bmax%7D%7D %7D $$ |
---|
|
| |
Y | Mathinline |
---|
body | --uriencoded--$$ \small Y = \left ( 405 + \dfrac%7B900 %7D%7B2%7D \right ) \mp \sqrt%7B \left ( 405 +\dfrac%7B900%7D%7B2%7D \right )%5e2 - \dfrac%7B2 \times 739.22 (493.994 + 405)%7D %7B6906.25%7D %7D $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \small Y =121.123\; \mathrm%7Bmm%7D $$ |
---|
|
| |
f Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize f = \dfrac%7BN%7D%7B2%7D - l_e = \dfrac%7B900%7D%7B2%7D - 45 = 405\; \mathrm%7Bmm%7D $$ |
---|
|
| |
x Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize x = m - l_e = 141.25 - 45 = 96.25\; \mathrm%7Bmm%7D $$ |
---|
|
| |
le | 45 mm | |
m Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize m = \dfrac%7BN - 0.95h%7D%7B2%7D = \dfrac%7B900 -0.95 \times 650%7D%7B2%7D =141.25\; \mathrm%7Bmm%7D $$ |
---|
|
| |
h | 650 mm | |
N | 900 mm | |
B | 500 mm | |
M | 365.17 kNm | |
P | 739.22 kN | |
Fy | 355 N/mm2 | |
treq Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize t_%7Breq%7D = 2 \sqrt %7B \dfrac%7B Tx %7D%7B\varphi F_y B %7D %7D = 2 \sqrt %7B \dfrac%7B 97.288 \times 96.25 \times 10%5e3 %7D%7B 0.9 \times 355 \times 500 %7D %7D =15.312\; \mathrm%7Bmm%7D $$ |
---|
|
| AISC DG-1-2nd 3.4.7a |
Required | Available | Ratio | Control |
---|
15.312 mm | 42 mm | 0.365 | √ |
...
The limit state of the anchor rod tension rupture is checked according to AISC 360-16.
Ab Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_b = \dfrac%7B \pi d%5e2%7D %7B4%7D = \dfrac%7B \pi 24%5e2%7D %7B4%7D = 452.389\; \mathrm%7Bmm%5e2%7D $$ |
---|
|
| |
Fn | 750000 kN/m2 | |
Rn Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = F_n A_b = 750 \times 452.389 \times 10%5e%7B-3%7D =339.292 \; \mathrm%7BkN%7D $$ |
---|
|
| AISC 360-16 J3-1 |
ΦRn Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize \varphi R_n = 0.75 \times 339.292 = 254.469 \; \; \mathrm%7BkN%7D $$ |
---|
| | |
Required | Available | Ratio | Control |
---|
28.779 kN | 254.469 kN | 0.113 | √ |
...
Ψ | 1.0 | ACI 318M-08 D.5.3.6 |
Np Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize N_p = 8A_%7Bbgr%7D f_c = 8 \times 7401.592 \times 25000 \times 10%5e%7B-6%7D $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \normalsize N_p = 1480.318\; \mathrm%7BkN%7D $$ |
---|
|
| ACI 318M-08 (D-15) |
Abgr | 7401.592 mm2 | |
fc | 25000 kN/m2 | |
Rn Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = \psi N_p = 1.0 \times 1480.318 \; \mathrm%7BkN%7D = 1480.318 $$ |
---|
|
| ACI 318M-08 (D-14) |
ΦRn Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize \varphi R_n = 0.70 \times 1480.318 = 1036.222 \; \mathrm%7BkN%7D $$ |
---|
|
| |
Required | Available | Ratio | Control |
---|
28.779 kN | 1036.222 kN | 0.028 | √ |
...
The calculation is made using the Elastic method, one of the methods selected in the steel analysis settings tab. In this check, the operation is performed on half of the symmetry axis and is calculated to form a force pair with the required force.
Ab Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize A_b = \dfrac%7B \pi d%5e2%7D %7B4%7D = \dfrac%7B \pi 24%5e2%7D %7B4%7D = 452.389 \; \mathrm%7Bmm%5e2%7D $$ |
---|
|
| |
Fn Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize F_n = 0.450 F_%7Bub%7D = 0.450 \times 1000 =450 \; \mathrm%7BN/mm%5e2%7D $$ |
---|
|
| |
Rn Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_n = F_n A_b = 450 \times 452.389 \times 10%5e%7B-3%7D =203.575\; \mathrm%7BkN%7D $$ |
---|
|
| AISC 360-16 J3-1 |
ΦRn | Image Removed Mathinline |
---|
body | --uriencoded--$$ \normalsize \varphi R_n = 0.75 \times 203.575 = 152.681 \; \mathrm%7BkN%7D $$ |
---|
| | |
Required | Available | Ratio | Control |
---|
9.885 kN | 152.681 kN | 0.065 | √ |
...
The bearing strength limit states of the base plate, which are “shear tear out” and “ovalization of bolt hole” for both end and inner bolts, are checked according to AISC 360-16.
dh | 24+3=27 mm | |
Lc,edge Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize L_%7Bc,edge%7D = L_e - 0.5d_h = 45 - 0.5 \times 27 =31.5 \; \mathrm%7Bmm%7D $$ |
---|
|
| |
Rn Image Removed | Mathinline |
---|
body | --uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2L_c \times t \times F_u \\2.4d \times t \times F_u \end%7Bmatrix%7D\right] \end%7Baligned%7D |
---|
|
| AISC 360-16 J3-6a |
Rn-edge Image Removed | Mathinline |
---|
body | --uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2(31.5)(42)(470 \times 10%5e%7B-3%7D) \\2.4(24)(42)(470 \times 10%5e%7B-3%7D) \end%7Bmatrix%7D\right] \end%7Baligned%7D =746.17\; \mathrm%7BkN%7D |
---|
|
| |
Rn Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize R_%7Bn%7D = n_eR_%7Bn,edge%7D =1 \times 746.17 =746.17 \; \mathrm%7BkN%7D $$ |
---|
|
| |
ΦRn Image Removed | Mathinline |
---|
body | --uriencoded--$$ \normalsize \varphi R_n = 0.75 \times 746.17 = 559.628 \; \mathrm%7BkN%7D $$ |
---|
|
| |
Required | Available | Ratio | Control |
---|
9.885 kN | 559.629 kN | 0.018 | √ |
...