Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Lev ≥ L e-min     

AISC 360-16 J3.4

 

 

Lev

45 mm

 

 

Le-min

30 mm

Minimum distance check according to Table J3.4

Strength Controls

Base Plate Thickness (

...

Compression)

The required plate thickness is determined according to AISC Steel Design Guide 1 Eq.3.3.15a.

fc

25000 kN/m2

 

A1

Image Removed

Mathinline
body--uriencoded--$$ \normalsize A_%7B1%7D = 900 \times 500 \times 10%5e%7B-6%7D = 0.45 \; \mathrm%7Bm%5e2%7D $$

 

A2

Image Removed

Mathinline
body--uriencoded--$$ \normalsize A_%7B2%7D = 900 \times 500 \times 10%5e%7B-6%7D = 0.45\; \mathrm%7Bm%5e2%7D $$

 

qmax

Image Removed

Mathinline
body--uriencoded--$$ \normalsize q_%7Bmax%7D = \varphi_c f_%7Bp(max)%7D B = 0.65 \times 21250 \times 0.5 = 6906.25 \; \mathrm%7BkN/m%7D $$

 

fp(max)

Image Removed

Mathinline
body--uriencoded--$$ \normalsize f_%7Bp(max)%7D = 0.85 f_c \sqrt %7B \dfrac%7BA_2%7D%7BA_1%7D %7D \leq 1.7f_c $$

 

fp(max)

Image Removed

Mathinline
body--uriencoded--$$ \normalsize f_%7Bp(max)%7D = 0.85 \times 25000 \sqrt %7B \dfrac%7B0.45%7D%7B0.45%7D %7D = 21250 \leq 1.7 \times 25000 =42500 \; \mathrm%7BkN/m%5e2%7D $$

 

e

Image Removed

Mathinline
body--uriencoded--$$ \normalsize e = \dfrac%7BM%7D%7BP%7D = \dfrac%7B365.17%7D%7B739.22%7D \times 10%5e3 =493.994 \; \mathrm%7Bmm%7D $$

 

ecrit

Image Removed

Mathinline
body--uriencoded--$$ \normalsize e_%7Bcrit%7D = \dfrac%7BN%7D%7B2%7D - \dfrac%7BP%7D%7B2q_%7Bmax%7D%7D = \dfrac%7B900%7D%7B2%7D - \dfrac%7B739.22%7D%7B2 \times 6906.25 \times 10%5e%7B-3%7D%7D =396.482 \; \mathrm%7Bmm%7D $$

 

Y

Image Removed

Mathinline
body--uriencoded--$$ \normalsize Y = \left ( f + \dfrac%7BN%7D%7B2%7D \right ) \mp \sqrt%7B \left ( f +\dfrac%7BN%7D%7B2%7D \right )%5e2 - \dfrac%7B2P (e + f)%7D %7Bq_%7Bmax%7D%7D %7D $$

 

Y

Image Removed

Mathinline
body--uriencoded--$$ \small Y = \left ( 405 + \dfrac%7B900 %7D%7B2%7D \right ) \mp \sqrt%7B \left ( 405 +\dfrac%7B900%7D%7B2%7D \right )%5e2 - \dfrac%7B2 \times 739.22 (493.994 + 405)%7D %7B6906.25%7D %7D $$
Mathinline
body--uriencoded--$$ \small Y =121.123\; \mathrm%7Bmm%7D $$

 

f

Image Removed

Mathinline
body--uriencoded--$$ \normalsize f = \dfrac%7BN%7D%7B2%7D - l_e = \dfrac%7B900%7D%7B2%7D - 45 = 405 \; \mathrm%7Bmm%7D $$

 

le

45 mm

 

l

max(m,n)=141.25 

 

m

Image Removed

Mathinline
body--uriencoded--$$ \normalsize m = \dfrac%7BN - 0.95h%7D%7B2%7D = \dfrac%7B900 -0.95 \times 650%7D%7B2%7D =141.25\; \mathrm%7Bmm%7D $$

 

n

Image Removed

Mathinline
body--uriencoded--$$ \normalsize n = \dfrac%7BB - 0.8b%7D%7B2%7D = \dfrac%7B500 -0.8 \times 300%7D%7B2%7D =130\; \mathrm%7Bmm%7D $$

 

h

650 mm

 

b

300 mm

 

N

900 mm

 

B

500 mm

 

M

365.17 kNm

 

P

739.22 kN

 

y

355 N/mm2

 

treq

Image Removed

Mathinline
body--uriencoded--$$ \normalsize t_%7Breq%7D = 2 \sqrt %7B \dfrac%7B \varphi_c f_%7Bp(max) %7D Y( l - \dfrac%7BY%7D%7B2%7D ) %7D%7B\varphi F_y %7D %7D =41.11\; \mathrm%7Bmm%7D $$
 

AISC DG-1-2nd

3.3.15.a

Required

Available

Ratio

Control

41.11 mm

42 mm

0.979

...

The required base plate thickness for tension is determined according to AISC Steel Design Guide 1 Eq.3.4.7a.

fc

25000 kN/m2

 

A1

Image Removed

Mathinline
body--uriencoded--$$ \normalsize A_%7B1%7D = 900 \times 500 \times 10%5e%7B-6%7D = 0.45 \; \mathrm%7Bm%5e2%7D $$

 

A2

Image Removed

Mathinline
body--uriencoded--$$ \normalsize A_%7B2%7D = 900 \times 500 \times 10%5e%7B-6%7D = 0.45 \; \mathrm%7Bm%5e2%7D $$

 

qmax

Image Removed

Mathinline
body--uriencoded--$$ \normalsize q_%7Bmax%7D = \varphi_c f_%7Bp(max)%7D B = 0.65 \times 21250 \times 0.5 = 6906.25 \; \mathrm%7BkN/m%7D $$

 

e

Image Removed

Mathinline
body--uriencoded--$$ \normalsize e = \dfrac%7BM%7D%7BP%7D = \dfrac%7B365.17%7D%7B739.22%7D \times 10%5e3 =493.994\; \mathrm%7Bmm%7D $$

 

ecrit

Image Removed

Mathinline
body--uriencoded--$$ \normalsize e_%7Bcrit%7D = \dfrac%7BN%7D%7B2%7D - \dfrac%7BP%7D%7B2q_%7Bmax%7D%7D = \dfrac%7B900%7D%7B2%7D - \dfrac%7B739.22%7D%7B2 \times 6906.25 \times 10%5e%7B-3%7D %7D =396.482\; \mathrm%7Bmm%7D $$

 

T

Image Removed

Mathinline
body--uriencoded--$$ \normalsize T = q_%7Bmax%7D Y - P = 6906.25 \times 121.123 \times 10%5e%7B-3%7D - 739.22 = 97.286 \; \mathrm%7BkN%7D $$

 

Y

Image Removed

 

Y

Image Removed

Mathinline
body--uriencoded--$$ \normalsize Y = \left ( f + \dfrac%7BN%7D%7B2%7D \right ) \mp \sqrt%7B \left ( f +\dfrac%7BN%7D%7B2%7D \right )%5e2 - \dfrac%7B2P (e + f)%7D %7Bq_%7Bmax%7D%7D %7D $$

 

Y

Mathinline
body--uriencoded--$$ \small Y = \left ( 405 + \dfrac%7B900 %7D%7B2%7D \right ) \mp \sqrt%7B \left ( 405 +\dfrac%7B900%7D%7B2%7D \right )%5e2 - \dfrac%7B2 \times 739.22 (493.994 + 405)%7D %7B6906.25%7D %7D $$

Mathinline
body--uriencoded--$$ \small Y =121.123\; \mathrm%7Bmm%7D $$

 

f

Image Removed

Mathinline
body--uriencoded--$$ \normalsize f = \dfrac%7BN%7D%7B2%7D - l_e = \dfrac%7B900%7D%7B2%7D - 45 = 405\; \mathrm%7Bmm%7D $$

 

x

Image Removed

Mathinline
body--uriencoded--$$ \normalsize x = m - l_e = 141.25 - 45 = 96.25\; \mathrm%7Bmm%7D $$

 

le

45 mm

 

m

Image Removed

Mathinline
body--uriencoded--$$ \normalsize m = \dfrac%7BN - 0.95h%7D%7B2%7D = \dfrac%7B900 -0.95 \times 650%7D%7B2%7D =141.25\; \mathrm%7Bmm%7D $$

 

h

650 mm

 

N

900 mm

 

B

500 mm

 

M

365.17 kNm

 

P

739.22 kN

 

Fy

355 N/mm2

 

treq

Image Removed

Mathinline
body--uriencoded--$$ \normalsize t_%7Breq%7D = 2 \sqrt %7B \dfrac%7B Tx %7D%7B\varphi F_y B %7D %7D = 2 \sqrt %7B \dfrac%7B 97.288 \times 96.25 \times 10%5e3 %7D%7B 0.9 \times 355 \times 500 %7D %7D =15.312\; \mathrm%7Bmm%7D $$

AISC DG-1-2nd

3.4.7a

Required

Available

Ratio

Control

15.312 mm

42 mm

0.365

...

The limit state of the anchor rod tension rupture is checked according to AISC 360-16.

Ab

Image Removed

Mathinline
body--uriencoded--$$ \normalsize A_b = \dfrac%7B \pi d%5e2%7D %7B4%7D = \dfrac%7B \pi 24%5e2%7D %7B4%7D = 452.389\; \mathrm%7Bmm%5e2%7D $$

Fn

750000 kN/m2 

Rn

Image Removed

Mathinline
body--uriencoded--$$ \normalsize R_n = F_n A_b = 750 \times 452.389 \times 10%5e%7B-3%7D =339.292 \; \mathrm%7BkN%7D $$

AISC 360-16 J3-1

ΦRn

Image Removed

Mathinline
body--uriencoded--$$ \normalsize \varphi R_n = 0.75 \times 339.292 = 254.469 \; \; \mathrm%7BkN%7D $$
 

Required

Available

Ratio

Control

28.779 kN

254.469 kN

0.113

...

Ψ

1.0

ACI 318M-08 D.5.3.6

Np

Image Removed

Mathinline
body--uriencoded--$$ \normalsize N_p = 8A_%7Bbgr%7D f_c = 8 \times 7401.592 \times 25000 \times 10%5e%7B-6%7D $$
Mathinline
body--uriencoded--$$ \normalsize N_p = 1480.318\; \mathrm%7BkN%7D $$

ACI 318M-08 (D-15)

Abgr

7401.592 mm2

 

fc

25000 kN/m2

 

Rn

Image Removed

Mathinline
body--uriencoded--$$ \normalsize R_n = \psi N_p = 1.0 \times 1480.318 \; \mathrm%7BkN%7D = 1480.318 $$

ACI 318M-08 (D-14)

ΦRn

Image Removed

Mathinline
body--uriencoded--$$ \normalsize \varphi R_n = 0.70 \times 1480.318 = 1036.222 \; \mathrm%7BkN%7D $$

 

Required

Available

Ratio

Control

28.779 kN

1036.222 kN

0.028

...

The calculation is made using the Elastic method, one of the methods selected in the steel analysis settings tab. In this check, the operation is performed on half of the symmetry axis and is calculated to form a force pair with the required force.

Ab

Image Removed

Mathinline
body--uriencoded--$$ \normalsize A_b = \dfrac%7B \pi d%5e2%7D %7B4%7D = \dfrac%7B \pi 24%5e2%7D %7B4%7D = 452.389 \; \mathrm%7Bmm%5e2%7D $$

Fn

Image Removed

Mathinline
body--uriencoded--$$ \normalsize F_n = 0.450 F_%7Bub%7D = 0.450 \times 1000 =450 \; \mathrm%7BN/mm%5e2%7D $$

Rn

Image Removed

Mathinline
body--uriencoded--$$ \normalsize R_n = F_n A_b = 450 \times 452.389 \times 10%5e%7B-3%7D =203.575\; \mathrm%7BkN%7D $$

AISC 360-16 J3-1

ΦRn

Image Removed

Mathinline
body--uriencoded--$$ \normalsize \varphi R_n = 0.75 \times 203.575 = 152.681 \; \mathrm%7BkN%7D $$
 

Required

Available

Ratio

Control

9.885 kN

152.681 kN

0.065

...

The bearing strength limit states of the base plate, which are “shear tear out” and “ovalization of bolt hole” for both end and inner bolts, are checked according to AISC 360-16.

dh

24+3=27 mm

 

Lc,edge

Image Removed

Mathinline
body--uriencoded--$$ \normalsize L_%7Bc,edge%7D = L_e - 0.5d_h = 45 - 0.5 \times 27 =31.5 \; \mathrm%7Bmm%7D $$

 

Rn

Image Removed

Mathinline
body--uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2L_c \times t \times F_u \\2.4d \times t \times F_u \end%7Bmatrix%7D\right] \end%7Baligned%7D

AISC 360-16 J3-6a

Rn-edge

Image Removed

Mathinline
body--uriencoded--\begin%7Baligned%7D \normalsize R_n = \mathrm%7Bmin%7D \left[\begin%7Bmatrix%7D 1.2(31.5)(42)(470 \times 10%5e%7B-3%7D) \\2.4(24)(42)(470 \times 10%5e%7B-3%7D) \end%7Bmatrix%7D\right] \end%7Baligned%7D =746.17\; \mathrm%7BkN%7D

 

Rn

Image Removed

Mathinline
body--uriencoded--$$ \normalsize R_%7Bn%7D = n_eR_%7Bn,edge%7D =1 \times 746.17 =746.17 \; \mathrm%7BkN%7D $$

 

ΦRn

Image Removed

Mathinline
body--uriencoded--$$ \normalsize \varphi R_n = 0.75 \times 746.17 = 559.628 \; \mathrm%7BkN%7D $$

 

Required

Available

Ratio

Control

9.885 kN

559.629 kN

0.018

...