Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

How does ideCAD control width-to-thickness Ratios according to AISC 341-16?


Tip

The width-to-thickness ratios of steel elements are automatically controlled and reported with steel elements reports according to Table D1.1.


Symbols

Fy = Specified minimum yield stress
Ry = Ratio of the expected yield stress to the specified minimum yield stress, Fy
Rt = Ratio of the expected tensile strength to the specified minimum tensile strength, Fu
Pa = Required axial strength using ASD load combinations, kips (N)
Pu = Required axial strength using LRFD load combinations, kips (N)
Py = Axial yield strength, kips (N)
Ca = Ratio of required strength to available axial yield strength
E= Modulus of elasticity of steel = 29,000 ksi (200 000 MPa)


Local buckling, when repeated like low-cycle fatigue caused by an earthquake, can cause very high localized stresses that can cause premature failure of an element intended to behave in a ductile manner. In order for horizontal structural system elements to achieve sufficient plastic deformation without local buckling under the effects of earthquakes, the width-thickness ratios of the compression elements must meet the conditions given in Table D1.1.

The width-to-thickness ratios of steel elements are automatically controlled and reported with steel elements reports according to Table D1.1.

Limiting Width-to-Thickness Ratios for Compression Elements for Moderately Ductile and Highly Ductile Members

Description of Element

Width-to- Thickness Ratio

Limiting Width-to-Thickness Ratio

Example

λhd
Highly Ductile Members

λmd
Moderately Ductile Members

Flanges of rolled or built-up I-shaped sections, channels and tees; legs of single angles or double-angle members with separators; outstanding legs of pairs of angles in continuous contact

b/t

Mathinline
body--uriencoded--$$ \normalsize 0.32\sqrt%7B\frac%7BE%7D%7BR_yF_y%7D%7D $$

Mathinline
body--uriencoded--$$ \normalsize 0.40\sqrt%7B\frac%7BE%7D%7BR_yF_y%7D%7D $$

Flanges of H-pile sections per Section D4

b/t

not applicable

Mathinline
body--uriencoded--$$ \normalsize 0.48\sqrt%7B\frac%7BE%7D%7BR_yF_y%7D%7D $$

Stems of tees

d/t

Mathinline
body--uriencoded--$$ \normalsize 0.32\sqrt%7B\frac%7BE%7D%7BR_yF_y%7D%7D $$

Mathinline
body--uriencoded--$$ \normalsize 0.40\sqrt%7B\frac%7BE%7D%7BR_yF_y%7D%7D $$

Walls of rectangular HSS used as diagonal braces

b/t

Mathinline
body--uriencoded--$$ \normalsize 0.65\sqrt%7B\frac%7BE%7D%7BR_yF_y%7D%7D $$

Mathinline
body--uriencoded--$$ \normalsize 0.76\sqrt%7B\frac%7BE%7D%7BR_yF_y%7D%7D $$

Flanges of boxed I-shaped sections

b/t

Mathinline
body--uriencoded--$$ \normalsize 0.65\sqrt%7B\frac%7BE%7D%7BR_yF_y%7D%7D $$

Mathinline
body--uriencoded--$$ \normalsize 0.76\sqrt%7B\frac%7BE%7D%7BR_yF_y%7D%7D $$

Side plates of boxed I-shaped sections and walls of built-up box shapes used as diagonal braces

h/t

Mathinline
body--uriencoded--$$ \normalsize 0.65\sqrt%7B\frac%7BE%7D%7BR_yF_y%7D%7D $$

Mathinline
body--uriencoded--$$ \normalsize 0.76\sqrt%7B\frac%7BE%7D%7BR_yF_y%7D%7D $$

Flanges of built up box shapes used as link beams

b/t

Mathinline
body--uriencoded--$$ \normalsize 0.65\sqrt%7B\frac%7BE%7D%7BR_yF_y%7D%7D $$

Mathinline
body--uriencoded--$$ \normalsize 0.76\sqrt%7B\frac%7BE%7D%7BR_yF_y%7D%7D $$

Webs of rolled or built-up I shaped sections and channels used as diagonal braces

hw/t

Mathinline
body--uriencoded--$$ \normalsize 1.57\sqrt%7B\frac%7BE%7D%7BR_yF_y%7D%7D $$

Mathinline
body--uriencoded--$$ \normalsize 1.57\sqrt%7B\frac%7BE%7D%7BR_yF_y%7D%7D $$

Where used in beams or columns as flanges in uniform compression due to axial, flexure, or combined axial and flexure:

  1. Walls of rectangular HSS

  2. Flanges and side plates of boxed I-shaped sections, webs and flanges of built-up box shapes

b/t

h/t

Mathinline
body--uriencoded--$$ \normalsize 0.65\sqrt%7B\frac%7BE%7D%7BR_yF_y%7D%7D $$

Mathinline
body--uriencoded--$$ \normalsize 1.18\sqrt%7B\frac%7BE%7D%7BR_yF_y%7D%7D $$

Where used in beams, columns, or links, as webs in flexure, or combined axial and flexure:

  1. Webs of rolled or built-up I shaped sections or channels [b]

  2. Side plates of boxed I-shaped sections

  3. Webs of built up box sections

h/tw

h/t

h/t

For Ca ≤ 0.114

Mathinline
body--uriencoded--$$ \small 2.57\sqrt%7B\frac%7BE%7D%7BR_yF_y%7D%7D(1-1.04C_a) $$

For Ca > 0.114

Mathinline
body--uriencoded--$$ \small 0.88\sqrt%7B\frac%7BE%7D%7BR_yF_y%7D%7D(2.68-C_a) $$

Mathinline
body--uriencoded--$$ \small \ge1.57\sqrt%7B\frac%7BE%7D%7BR_yF_y%7D%7D $$

where

Mathinline
body--uriencoded--$$ \small C_a=\frac%7BP_u%7D%7B\phi_cP_y%7D \; \; (LRFD) $$

Mathinline
body--uriencoded--$$ \small C_a=\frac%7B\Omega_c P_a%7D%7BP_y%7D \; \; (ASD) $$

Mathinline
body$$ \small P_y=R_yF_yA_g $$

For Ca ≤ 0.114

Mathinline
body--uriencoded--$$ \small 3.96\sqrt%7B\frac%7BE%7D%7BR_yF_y%7D%7D(1-3.04C_a) $$

For Ca > 0.114

Mathinline
body--uriencoded--$$ \small 1.29\sqrt%7B\frac%7BE%7D%7BR_yF_y%7D%7D(2.12-C_a) $$

Mathinline
body--uriencoded--$$ \small \ge1.57\sqrt%7B\frac%7BE%7D%7BR_yF_y%7D%7D $$

where

Mathinline
body--uriencoded--$$ \small C_a=\frac%7BP_u%7D%7B\phi_cP_y%7D \; \; (LRFD) $$

Mathinline
body--uriencoded--$$ \small C_a=\frac%7B\Omega_c P_a%7D%7BP_y%7D \; \; (ASD) $$

Mathinline
body$$ \small P_y=R_yF_yA_g $$

Webs of built-up box sections used as EBF links

h/t

Mathinline
body--uriencoded--$$ \normalsize 0.67\sqrt%7B\frac%7BE%7D%7BR_yF_y%7D%7D $$

Mathinline
body--uriencoded--$$ \normalsize 1.75\sqrt%7B\frac%7BE%7D%7BR_yF_y%7D%7D $$

Webs of H-Pile sections

h/tw

not applicable

Mathinline
body--uriencoded--$$ \normalsize 1.57\sqrt%7B\frac%7BE%7D%7BR_yF_y%7D%7D $$

Walls of round HSS

D/t

Mathinline
body--uriencoded--$$ \normalsize 0.053\frac%7BE%7D%7BR_yF_y%7D $$

Mathinline
body--uriencoded--$$ \normalsize 0.062\frac%7BE%7D%7BR_yF_y%7D $$