Aşağıdaki basit kirişin 2 numaralı düğüm noktasının deformasyonunu Virtüel İş Yöntemini kullanarak elle hesaplayınız.
...
Çözüm için ipucu
Mathinline |
---|
body | --uriencoded--$$ \normalsize Δ =\int \frac %7BMM%5e'%7D%7BEI%7D $$ |
---|
|
Yöntem gereği; integral 1-2 ve 2-3 düğüm noktaları arasındaki çubuklar için ayrı ayrı gözönüne alınmalıdır.
Ayrıntılı çözüm için
...
E=Elastisite modülü A=Enkesit alanı I=Enkesit atalet momenti M=Dış yüklemeden kaynaklı moment M'=Birim yüklemeden kaynaklı moment Δ=Deformasyon
1. Adım Birim Yüklemeye göre Moment fonksiyonu bulma
...
Q: birim yük D1, D3: Mesnet tepkileri M'(2): 2 D.N moment değeri L: Eleman boyu M'1-2(x): 1-2 Moment fonksiyonu M2-3(x): 2-3 Moment fonksiyonu ΣM1,dn: 1 D.N göre toplam moment.
ΣD: Toplam denge
...
Mathinline |
---|
body | $$ \normalsize ΣD = D_1 + D_3 - Q = 0 $$ |
---|
|
Mathinline |
---|
body | $$ \large normalsize ΣD = D_1 + 0.5 - 1 = 0 $$ |
---|
|
Mathinline |
---|
body | $$ \large normalsize D_1=0.5 tf $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \large normalsize M'_%7B1-2%7D(0) = 0 $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \large normalsize M'_%7B2-3%7D(0) = 0 $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \large normalsize M'_%7B1-2%7D(2) = M'_%7B2-3%7D(2) = D_1*(L/2) = D_2*(L/2) $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \large normalsize M'_%7B1-2%7D(2) = M'_%7B2-3%7D(2) =0.5*(4/2) = 0.5*(4/2) = 1 $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \large normalsize M'_%7B1-2%7D(x=L/2) = M'_%7B2-3%7D(x=L/2) = M'(2) =1 tf.m $$ |
---|
|
Mathinline |
---|
body | $$ \large normalsize M'(2) =1 tf.m $$ |
---|
|
Moment Fonksiyonu 1-2 :
...
normalsize M'_%7B1-2%7D(x) = 0.5x $$ |
|
Moment Fonksiyonu 2-3 :
...
normalsize M'_%7B2-3%7D(x) = -0.5*x+2 $$ |
|
...
2. Adım : Verilen Yüklemeye göre Moment Fonksiyonu Bulma
...
q: Yayılı yük D1, D3: Mesnet tepkileri M(2): 2 D.N moment değeri L: Eleman boyu M(x): Moment fonksiyonu ΣM1,dn: 1 D.N göre toplam moment.
ΣD: Toplam denge
Mathinline |
---|
body | --uriencoded--$$ \large normalsize ΣM_%7B1,dn%7D =0 $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \large normalsize ΣM_%7B1,dn%7D =(q*L)*(L/2)-D_3*L=0 $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \large normalsize ΣM_%7B1,dn%7D =(2*4)*(4/2)-D_3*4=0 $$ |
---|
|
Mathinline |
---|
body | $$ \large normalsize D_3=4 tf $$ |
---|
|
Mathinline |
---|
body | $$ \large normalsize ΣD =0 $$ |
---|
|
Mathinline |
---|
body | $$ \large normalsize ΣD = D_1 + D_3 - q*L = 0 $$ |
---|
|
Mathinline |
---|
body | $$ \large normalsize ΣD = D_1 + 4 - 2*8 = 0 $$ |
---|
|
Mathinline |
---|
body | $$ \large normalsize D_1=4 tf $$ |
---|
|
Mathinline |
---|
body | $$ \large normalsize M(0) =0 tfm $$ |
---|
|
Mathinline |
---|
body | $$ \large normalsize M(4) =0 tfm $$ |
---|
|
Mathinline |
---|
body | $$ \large normalsize M(2) =D_1*(L/2) - q*(L/2)*(L/4) = D_2*(L/2)- q*(L/2)*(L/4)tfm $$ |
---|
|
Mathinline |
---|
body | $$ \large normalsize M(2) =4*(2)-2*(4/2)*(4/4) = 4*(2)-2*(4/2)*(4/4) =4tfm $$ |
---|
|
Mathinline |
---|
body | $$ \large normalsize M(2) =4 tfm $$ |
---|
|
Moment Fonksiyonu :
...
normalsize M(x) = -x%5e2 + 4x $$ |
|
...
3. Adım : Önceki Adımlarda bulunan M ve M' Moment Fonksiyonlarının çarpılarak Integralinin Alınması
Mathinline |
---|
body | --uriencoded--$$ \large normalsize Δ =\int \frac %7BM(x)M%5e'(x)%7D%7BEI%7Ddx $$ |
---|
|
...
Mathinline |
---|
body | --uriencoded--$$ \large normalsize Δ = Δ_%7B1-2%7D + Δ_%7B2-3%7D $$ |
---|
|
...
Mathinline |
---|
body | --uriencoded--$$ \large normalsize Δ =\int \frac %7BM_%7B1-2%7DM_%7B1-2%7D%5e'%7D%7BEI%7D + \int \frac %7BM_%7B2-3%7DM_%7B2-3%7D%5e'%7D%7BEI%7D $$ |
---|
|
1-2 Çubuğu için Integral
Mathinline |
---|
body | --uriencoded--$$ \large normalsize Δ_%7B1-2%7DEI = \int_0%5e%7BL/2%7D %7B(-x%5e2+4x)0.5x dx%7D $$ |
---|
|
...
Mathinline |
---|
body | --uriencoded--$$ \large normalsize Δ_%7B1-2%7DEI = \int_0%5e%7B2%7D %7B(-0.5x%5e3+2x%5e2) dx%7D $$ |
---|
|
...
Mathinline |
---|
body | --uriencoded--$$ \large normalsize Δ_%7B1-2%7DEI = \frac %7B-0.5x%5e4%7D 4 \right%7C_0%5e2 + \frac %7B2x%5e3%7D 3 \right%7C_0%5e2 %7D $$ |
---|
|
...
Mathinline |
---|
body | --uriencoded--$$ \large normalsize Δ_%7B1-2%7DEI = -2 + 5.333 = 3.333 %7D $$ |
---|
|
2-3 Çubuğu için Integral
Mathinline |
---|
body | --uriencoded--$$ \large normalsize Δ_%7B2-3%7DEI = \int_%7BL/2%7D%5e%7BL%7D %7B(-x%5e2+4x)(-0.5x+2) dx%7D $$ |
---|
|
...
Mathinline |
---|
body | --uriencoded--$$ \large normalsize Δ_%7B2-3%7DEI = \int_2%5e%7B4%7D %7B(0.5x%5e3-4x%5e2+8x) dx%7D $$ |
---|
|
...
Mathinline |
---|
body | --uriencoded--$$ \large normalsize Δ_%7B2-3%7DEI = \frac %7B0.5x%5e4%7D 4 \right%7C_2%5e4 - \frac %7B4x%5e3%7D 3 \right%7C_2%5e4 + \frac %7B8x%5e2%7D 2 \right%7C_2%5e4 %7D $$ |
---|
|
...
Mathinline |
---|
body | --uriencoded--$$ \large normalsize Δ_%7B2-3%7DEI = 30 -74.667 +48 = 3.333 %7D $$ |
---|
|
...
Mathinline |
---|
body | --uriencoded--$$ \large normalsize ΔEI = Δ_%7B1-2%7DEI + Δ_%7B2-3%7DEI = 3.333 + 3.333 %7D $$ |
---|
|
...
Mathinline |
---|
body | --uriencoded--$$ \large normalsize ΔEI = 6.666 %7D $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \large normalsize E = 360t/cm%5e2 %7D $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \large normalsize I = (1/12)*(12*12%5e3) = 1728cm%5e4 %7D $$ |
---|
|
...
Mathinline |
---|
body | --uriencoded--$$ \large normalsize EI = E * I = 360 * 1728 = 622080tf.cm%5e2 %7D $$ |
---|
|
...
Mathinline |
---|
body | --uriencoded--$$ \large normalsize EI = 622080tf.cm%5e2 = 62.208 tf.m%5e2 %7D $$ |
---|
|
...
Mathinline |
---|
body | --uriencoded--$$ \large normalsize ΔEI = 6.666 %7D $$ |
---|
|
Mathinline |
---|
body | --uriencoded--$$ \large normalsize EI = 62.208 tf.m%5e2 %7D $$ |
---|
|
...
normalsize Δ = 6.666/EI = 6.666/62.208 = 0.107 m %7D $$ |
|
2 numaralı düğüm noktasının deformasyonunu = 0.107m
...