Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

How does ideCAD design castellated beams according to AISC 360-16?


Tip
  • Castellated steel beam design is made automatically according to AISC 360-16.

Tip
  • The user can change steel beam design settings.


Symbols

Cb : The lateral-torsional buckling modification factor
Zx = Plastic section modulus about the x-axis, in.3 (mm3)
E: Modulus of elasticity of steel = 29,000 ksi (200 000 MPa)
Fy : Specified minimum yield stress of the type of steel being used, ksi
Fcr : Critical stress
K : Effective length factor
L: Laterally unbraced length of the member
Pr: Required axial force resistance for LRFD or ASD load combinations
Pc: Strength of axial compressive force available according to Section E
Mr: Required bending moment strength for LRFD or ASD load combinations
Mc: current bending moment strength according to Section F
r: Radius of gyration
λ: Width-to-thickness ratio for the element as defined in Section B4.1
λr : Limiting width-to-thickness ratio as defined in Table B4.1a
Lb : Length between points that are either braced against lateral displacement of the compression flange or braced against twist of the cross-section, in. (mm)
Lp : The limiting laterally unbraced length for the limit state of yielding, in. (mm)
Lr: The limiting unbraced length for the limit state of inelastic lateral-torsional buckling, in. (mm),
Mn : The nominal flexural strength
Mp : Plastic bending moment
Sx : Elastic section modulus taken about the x-axis, in.3 (mm3)


Castellated Beam Sections

Castellated hexagonal, castellated circular, castellated octagonal, and angelina sections can be defined. Castellated hexagonal and castellated circular sections are designed.

Biaxial Bending and Axial Force

Yielding Limit State

For the yield limit state, the nominal flexural strength, Mn, is calculated using the equation below by AISC 360-16.

Mathinline
body--uriencoded--$$ \normalsize M_n = M_p= F_%7By%7DZ_x \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; (F2-1) $$

  • When Lb ≤ Lp

Mathinline
body--uriencoded--$$ \normalsize M_n = M_p= F_%7By%7DZ_x \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; (F2-1) $$

  • When Lp < Lb ≤ Lr

Mathinline
body--uriencoded--$$ \normalsize M_n = C_b \Bigg [ M_p-(M_p-0.7F_yS_x) \bigg( \dfrac%7BL_b-L_p%7D%7BL_r-L_p%7D \bigg) \Bigg ] \le M_p \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; (F2-2) $$

  • When LbLr

Mathinline
body--uriencoded--$$ \normalsize M_n = F_%7Bcr%7DS_x \le M_p \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; (F2-3) $$

Axial Force

The axial compression capacity for the web part of the castellated beam is calculated as follows.

Mathinline
body--uriencoded--$$ \normalsize P_n = F_%7Bcr%7DA_g \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; (E3-1) $$

The critical stress, Fcr, is calculated as shown below.

  • When

    Mathinline
    body--uriencoded--$$ \normalsize \dfrac %7BL_c%7D %7Br%7D \leq 4.71 \sqrt %7B \dfrac%7BE%7D%7BF_y%7D %7D \; \; \; \; \;\;\;\;\; \; \; \; \; (or \; \dfrac %7BF_y%7D %7BF_e%7D \leq 2.25) $$

Mathinline
body--uriencoded--$$ \normalsize F_%7Bcr%7D = \bigg(0.658%5e%7B\frac%7BF_y%7D%7BF_e%7D%7D \bigg) F_%7By%7D \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; (E3-2) $$

  • When

    Mathinline
    body--uriencoded--$$ \normalsize \dfrac %7BL_c%7D %7Br%7D > 4.71 \sqrt %7B \dfrac%7BE%7D%7BF_y%7D %7D \; \; \; \; \;\;\;\;\; \; \; \; \; (or \; \dfrac %7BF_y%7D %7BF_e%7D > 2.25) $$

Mathinline
body--uriencoded--$$ \normalsize F_%7Bcr%7D = 0.877 F_%7Be%7D \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; (E3-3) $$

Mathinline
body--uriencoded--$$ \normalsize F_%7Be%7D = \dfrac%7B\pi%5e2E%7D%7B \bigg( \dfrac%7BL_c%7D%7Br%7D \bigg)%5e2 %7D \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; (E3-4) $$

Combined Forces

Equation H1.1 is used for biaxial and single symmetry axis members under combined axial compression and flexural moment.

  • Mathinline
    body--uriencoded--$$ \normalsize \mathrm%7BWhen%7D \;\; \dfrac%7BP_r%7D%7BP_c%7D \ge 0.2 \;\;\;\;\;\;\;\;\;\;\; \dfrac%7BP_r%7D%7BP_c%7D + \dfrac%7B8%7D%7B9%7D \bigg(\dfrac%7BM_%7Brx%7D%7D%7BM_%7Bcx%7D%7D+\dfrac%7BM_%7Bry%7D%7D%7BM_%7Bcx%7D%7D \bigg) \le1.0 \;\;\;\;\;\;\;\;\;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\;\;\;\;\; (H1-1a) $$

  • Mathinline
    body--uriencoded--$$ \normalsize \mathrm%7BWhen%7D \;\; \dfrac%7BP_r%7D%7BP_c%7D \ge 0.2 \;\;\;\;\;\;\;\;\;\;\; \dfrac%7BP_r%7D%7B2P_c%7D + \bigg(\dfrac%7BM_%7Brx%7D%7D%7BM_%7Bcx%7D%7D+\dfrac%7BM_%7Bry%7D%7D%7BM_%7Bcx%7D%7D \bigg) \le1.0 \;\;\;\;\;\;\;\;\;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\;\;\;\;\; (H1-1b) $$

Shear Control

Gross and Net Area Shear Control

Shear control with the gross area is the full web part of the castellated beam, while the shear control with the net area is calculated by considering the castellated beam's hollow section.

Mathinline
body--uriencoded--$$ \normalsize V_%7Bn%7D = 0.6 F_%7By%7DbtC_%7Bv2%7D \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; (G3-1) $$

Horizontal Shear Control

The shear force on the castellated beam web is calculated using the balance equation and compared with the shear strength.

Mathinline
body--uriencoded--$$ \normalsize V_%7Bn%7D = 0.6 F_%7By%7DbtC_%7Bv2%7D \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; (G3-1) $$

Vierendeel Bending Control

Axial Force and Biaxial Bending

The effects of the T section on the castellated beam spaces are found with the equilibrium equation. Internal force diagrams are used in the static analysis while calculating these forces. The equation of equilibrium calculates the bending moment and axial force on the T section. Then, the combined effects are considered by calculating the T-section bending and axial force strengths.

Image Removedimage-20240201-142212.pngImage Added
  • Mathinline
    body--uriencoded--$$ \normalsize \mathrm%7BWhen%7D \;\; \dfrac%7BP_r%7D%7BP_c%7D \ge 0.2 \;\;\;\;\;\;\;\;\;\;\; \dfrac%7BP_r%7D%7BP_c%7D + \dfrac%7B8%7D%7B9%7D \bigg(\dfrac%7BM_%7Brx%7D%7D%7BM_%7Bcx%7D%7D+\dfrac%7BM_%7Bry%7D%7D%7BM_%7Bcx%7D%7D \bigg) \le1.0 \;\;\;\;\;\;\;\;\;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\;\;\;\;\; (H1-1a) $$

  • Mathinline
    body--uriencoded--$$ \normalsize \mathrm%7BWhen%7D \;\; \dfrac%7BP_r%7D%7BP_c%7D \ge 0.2 \;\;\;\;\;\;\;\;\;\;\; \dfrac%7BP_r%7D%7B2P_c%7D + \bigg(\dfrac%7BM_%7Brx%7D%7D%7BM_%7Bcx%7D%7D+\dfrac%7BM_%7Bry%7D%7D%7BM_%7Bcx%7D%7D \bigg) \le1.0 \;\;\;\;\;\;\;\;\;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\;\;\;\;\; (H1-1b) $$

Web Post Buckling Control

Forces Acting on the Web

The bending moment values ​​at the upper and lower boundaries of the web section between the castellated beam spaces are found, and lateral-torsional buckling is checked according to the rectangular section.

Web Post Buckling Strength

The web section between the castellated beam is calculated according to AISC 360-16 Section F.

  • The limit state of flange local buckling does not apply to sections with compact flanges.

Mathinline
body--uriencoded--$$ \normalsize M_n = M_p= F_%7By%7DZ_y \le 1.6F_yS_y \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; (F6-1) $$

  • The nominal flexural strength, Mn, is calculated below for sections with noncompact flanges.

Mathinline
body--uriencoded--$$ \normalsize M_n = M_p-(M_p-0.7F_yS_y) \bigg( \dfrac%7B\lambda-\lambda_%7Bpf%7D %7D%7B\lambda_%7Brf%7D-\lambda_%7Bpf%7D%7D \bigg) \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; (F6-2) $$

  • The nominal flexural strength, Mn, is calculated below for sections with slender flanges.

Mathinline
body--uriencoded--$$ \normalsize M_n = F_%7Bcr%7DS_y \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; (F6-3) $$

Mathinline
body--uriencoded--$$ \normalsize F_%7Bcr%7D = \dfrac %7B0.69E%7D%7B\Big( \dfrac%7Bb%7D%7Bt_f%7D \Big)%5e2%7D \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; \; \; \; \; \;\;\;\;\; (F6-4) $$
 


Child pages (Children Display)